About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 351821, 13 pages
http://dx.doi.org/10.1155/2014/351821
Research Article

The Proteome of the Differentiating Mesencephalic Progenitor Cell Line CSM14.1 In Vitro

1Department of Anatomy, University of Rostock, Gertrudenstraße 9, 18057 Rostock, Germany
2Department of Pathology, University of Würzburg, Josef-Schneider Straße 2, 97080 Würzburg, Germany
3Proteome Center Rostock, University of Rostock, Schillingallee 69, 18055 Rostock, Germany

Received 5 July 2013; Accepted 16 December 2013; Published 30 January 2014

Academic Editor: Stephan M. Huber

Copyright © 2014 B. Weiss et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Lindvall and Z. Kokaia, “Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease,” Trends in Pharmacological Sciences, vol. 30, no. 5, pp. 260–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Lindvall and A. Björklund, “Cell therapeutics in parkinson's disease,” Neurotherapeutics, vol. 8, no. 4, pp. 539–548, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Pfisterer, A. Kirkeby, O. Torper et al., “Direct conversion of human fibroblasts to dopaminergic neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 25, pp. 10343–10348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Martínez-Serrano and A. Björklund, “Immortalized neural progenitor cells for CNS gene transfer and repair,” Trends in Neurosciences, vol. 20, no. 11, pp. 530–538, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Durand, D. C. Chugani, M. Mahmoudi, and M. E. Phelps, “Characterization of neuron-like cell line immortalized from primary rat mesencephalon cultures,” Society for Neuroscience Abstracts, vol. 16, p. 40, 1990.
  6. L. T. Zhong, T. Sarafian, D. J. Kane et al., “bcl-2 inhibits death of central neural cells induced by multiple agents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 10, pp. 4533–4537, 1993. View at Scopus
  7. R. Anton, J. H. Kordower, N. T. Maidment et al., “Neural-targeted gene therapy for rodent and primate hemiparkinsonism,” Experimental Neurology, vol. 127, no. 2, pp. 207–218, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Anton, J. H. Kordower, D. J. Kane, C. H. Markham, and D. E. Bredesen, “Neural transplantation of cells expressing the anti-apoptotic gene bcl-2,” Cell Transplantation, vol. 4, no. 1, pp. 49–54, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. P. Haas and A. Wree, “Dopaminergic differentiation of the Nurr1-expressing immortalized mesencephalic cell line CSM14.1 in vitro,” Journal of Anatomy, vol. 201, no. 1, pp. 61–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. P. Haas, S. Beckmann, S. Petrov, C. Andressen, A. Wree, and O. Schmitt, “Transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the neonatal Parkinsonian rat caudate putamen,” Journal of Neuroscience Research, vol. 85, no. 4, pp. 778–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Hoffrogge, S. Beyer, R. Hübner et al., “2-DE profiling of GDNF overexpression-related proteome changes in differentiating ST14A rat progenitor cells,” Proteomics, vol. 7, no. 1, pp. 33–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Winkler, R. A. Fricker, M. A. Gates et al., “Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain,” Molecular and Cellular Neurosciences, vol. 11, no. 3, pp. 99–116, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Cattaneo and L. Conti, “Generation and characterization of embryonic striatal conditionally immortalized ST14A cells,” Journal of Neuroscience Research, vol. 53, no. 2, pp. 223–234, 1998.
  14. H. J. G. Gundersen, “Estimators of the number of objects per area unbiased by edge effects,” Microscopica Acta, vol. 81, no. 2, pp. 107–117, 1978. View at Scopus
  15. G. Lessner, O. Schmitt, S. J. P. Haas et al., “Differential proteome of the striatum from hemiparkinsonian rats displays vivid structural remodeling processes,” Journal of Proteome Research, vol. 9, no. 9, pp. 4671–4687, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. S. Vernon and D. E. Griffin, “Characterization of an in vitro model of alphavirus infection of immature and mature neurons,” Journal of Virology, vol. 79, no. 6, pp. 3438–3447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial Fibrillary Acidic Protein: GFAP-thirty-one years (1969–2000),” Neurochemical Research, vol. 25, no. 9-10, pp. 1439–1451, 2000. View at Scopus
  18. C. N. Svendsen, A. Bhattacharyya, and Y. T. Tai, “Neurons from stem cells: preventing an identity crisis,” Nature Reviews Neuroscience, vol. 2, no. 11, pp. 831–834, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Polak and S. van Noorden, An Introduction to Immunocytochemistry: Current Techniques and Problems, Oxford University Press, Oxford, UK, 1992.
  20. P. Kermer, M. Krajewska, J. M. Zapata et al., “Bag1 is a regulator and marker of neuronal differentiation,” Cell Death and Differentiation, vol. 9, no. 4, pp. 405–413, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J.-P. Haas, S. Petrov, G. Kronenberg, O. Schmitt, and A. Wree, “Orthotopic transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the substantia nigra of hemiparkinsonian rats induces neuronal differentiation and motoric improvement,” Journal of Anatomy, vol. 212, no. 1, pp. 19–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Udenfriend and J. B. Wyngaarden, “Precursors of adrenal epinephrine and norepinephrine in vivo,” Biochimica et Biophysica Acta, vol. 20, no. 1, pp. 48–52, 1956. View at Scopus
  23. E. Y. Levin, B. Levenberg, and S. Kaufman, “The enzymatic conversion of 3,4-dihydroxyphenylethylamine to norepinephrine,” The Journal of Biological Chemistry, vol. 235, pp. 2080–2086, 1960. View at Scopus
  24. P. McCaffery and U. C. Drager, “High levels of a retinoic acid-generating dehydrogenase in the meso- telencephalic dopamine system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7772–7776, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. N. S. K. Haque, C. J. Leblanc, and O. Isacson, “Differential dissection of the rat E16 ventral mesencephalon and survival and reinnervation of the 6-OHDA-lesioned striatum by a subset of aldehyde dehydrogenase-positive TH neurons,” Cell Transplantation, vol. 6, no. 3, pp. 239–248, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. Å. Wallén, R. H. Zetterström, L. Solomin, M. Arvidsson, L. Olson, and T. Perlmann, “Fate of mesencephalic AHD2-expressing dopamine progenitor cells in Nurr1 mutant mice,” Experimental Cell Research, vol. 253, no. 2, pp. 737–746, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. C. P. M. Reutelingsperger, G. Hornstra, and H. C. Hemker, “Isolation and partial purification of a novel anticoagulant from arteries of human umbilical cord,” European Journal of Biochemistry, vol. 151, no. 3, pp. 625–629, 1985. View at Scopus
  28. R. J. Flower and N. J. Rothwell, “Lipocortin-1: cellular mechanisms and clinical relevance,” Trends in Pharmacological Sciences, vol. 15, no. 3, pp. 71–76, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Perretti, “Lipocortin-derived peptides,” Biochemical Pharmacology, vol. 47, no. 6, pp. 931–938, 1994. View at Scopus
  30. P. Raynal and H. B. Pollard, “Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins,” Biochimica et Biophysica Acta, vol. 1197, no. 1, pp. 63–93, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. J. V. Bonventre, “Roles of phospholipases A2 in brain cell and tissue injury associated with ischemia and excitotoxicity,” Journal of Lipid Mediators and Cell Signalling, vol. 17, no. 1, pp. 71–79, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Klein, “Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids,” Journal of Neural Transmission, vol. 107, no. 8-9, pp. 1027–1063, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. W. L. Titsworth, N. K. Liu, and X. M. Xu, “Role of secretory phospholipase A2 in CNS inflammation: implications in traumatic spinal cord injury,” CNS and Neurological Disorders, vol. 7, no. 3, pp. 254–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. S. D. Moses, M. D. Jensen, L. F. Lue et al., “Secretory PLA2-IIA: a new inflammatory factor for Alzheimer's disease,” Journal of Neuroinflammation, vol. 3, p. 28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Marusic, M. W. Leach, J. W. Pelker et al., “Cytosolic phospholipase A2α-deficient mice are resistant to experimental autoimmune encephalomyelitis,” Journal of Experimental Medicine, vol. 202, no. 6, pp. 841–851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Pinto, T. Brenner, P. Dan, M. Krimsky, and S. Yedgar, “Extracellular phospholipase A2 inhibitors suppress central nervous system inflammation,” Glia, vol. 44, no. 3, pp. 275–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Hayakawa, M. C. J. Chang, S. I. Rapoport, and N. M. Appel, “Selective dopamine receptor stimulation differentially affects [3H]arachidonic acid incorporation, a surrogate marker for phospholipase A2-mediated neurotransmitter signal transduction, in a rodent model of Parkinson's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 296, no. 3, pp. 1074–1084, 2001. View at Scopus
  38. M. Tariq, H. A. Khan, K. A. Moutaery, and S. A. Deeb, “Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents,” Brain Research Bulletin, vol. 54, no. 1, pp. 77–82, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Liu, S. Han, P. H. Lu, and X. M. Xu, “Upregulation of annexins I, II, and V after traumatic spinal cord injury in adult rats,” Journal of Neuroscience Research, vol. 77, no. 3, pp. 391–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. C. P. M. Reutelingsperger and W. L. van Heerde, “Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis,” Cellular and Molecular Life Sciences, vol. 53, no. 6, pp. 527–532, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton, and P. M. Henson, “Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages,” The Journal of Immunology, vol. 148, no. 7, pp. 2207–2216, 1992. View at Scopus
  42. M. Leist and M. Jäättelä, “Four deaths and a funeral: from caspases to alternative mechanisms,” Nature Reviews Molecular Cell Biology, vol. 2, no. 8, pp. 589–598, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. R. F. A. Zwaal and A. J. Schroit, “Pathophysiologic implications of membrane phospholipid asymmetry in blood cells,” Blood, vol. 89, no. 4, pp. 1121–1132, 1997. View at Scopus
  44. N. Takei, K. Ohsawa, Y. Imaia, H. Nakao, A. Iwasaki, and S. Kohsaka, “Neurotrophic effects of annexin V on cultured neurons from embryonic rat brain,” Neuroscience Letters, vol. 171, no. 1-2, pp. 59–62, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Mizuno, K. Asai, K. Fujita et al., “Neurotrophic action of lipocortin 1 derived from astrocytes on cultured rat cortical neurons,” Molecular Brain Research, vol. 60, no. 1, pp. 28–39, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Han, K.-H. Zhang, P. H. Lu, and X. M. Xu, “Effects of annexins II and V on survival of neurons and astrocytes in vitro,” Acta Pharmacologica Sinica, vol. 25, no. 5, pp. 602–610, 2004. View at Scopus
  47. S. Hatano and F. Oosawa, “Isolation and characterization of plasmodium actin,” Biochimica et Biophysica Acta, vol. 127, no. 2, pp. 488–498, 1966. View at Scopus
  48. K. C. Holmes, D. Popp, W. Gebhard, and W. Kabsch, “Atomic model of the actin filament,” Nature, vol. 347, no. 6288, pp. 44–49, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. H. L. Yin and T. P. Stossel, “Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein,” Nature, vol. 281, no. 5732, pp. 583–586, 1979. View at Scopus
  50. H. L. Yin, J. H. Hartwig, K. Maruyama, and T. P. Stossel, “Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization,” Journal of Biological Chemistry, vol. 256, no. 18, pp. 9693–9697, 1981. View at Scopus
  51. J. A. Lamb, P. G. Allen, B. Y. Tuan, and P. A. Janmey, “Modulation of gelsolin function. Activation at low pH overrides Ca2+ requirement,” Journal of Biological Chemistry, vol. 268, no. 12, pp. 8999–9004, 1993. View at Scopus
  52. R. C. Robinson, M. Mejillano, V. P. Le, L. D. Burtnick, H. L. Yin, and S. Choe, “Domain movement in gelsolin: a calcium-activated switch,” Science, vol. 286, no. 5446, pp. 1939–1942, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. L. D. Burtnick, D. Urosev, E. Irobi, K. Narayan, and R. C. Robinson, “Structure of the N-terminal half of gelsolin bound to actin: roles in severing, apoptosis and FAF,” The EMBO Journal, vol. 23, no. 14, pp. 2713–2722, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. P. A. Jammey, K. Iida, H. L. Yin, and T. P. Stossel, “Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin,” Journal of Biological Chemistry, vol. 262, no. 25, pp. 12228–12236, 1987. View at Scopus
  55. P. A. Janmey and T. P. Stossel, “Modulation of gelsolin function by phosphatidylinositol 4,5 bisphosphate,” Nature, vol. 325, no. 6102, pp. 362–364, 1987. View at Scopus
  56. E. J. Furnish, W. Zhou, C. C. Cunningham, J. A. Kas, and C. E. Schmidt, “Gelsolin overexpression enhances neurite outgrowth in PC12 cells,” The FEBS Letters, vol. 508, no. 2, pp. 282–286, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. E. N. Star, D. J. Kwiatkowski, and V. N. Murthy, “Rapid turnover of actin in dendritic spines and its regulation by activity,” Nature Neuroscience, vol. 5, no. 3, pp. 239–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. J. H. Dong, G. X. Ying, X. Liu et al., “Lesion-induced gelsolin upregulation in the hippocampus following entorhinal deafferentation,” Hippocampus, vol. 16, no. 1, pp. 91–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. R. D. Mullins, J. A. Heuser, and T. D. Pollard, “The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6181–6186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. W. T. Lankes and H. Furthmayr, “Moesin: a member of the protein 4.1-talin-ezrin family of proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 19, pp. 8297–8301, 1991. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Mangeat, C. Roy, and M. Martin, “ERM proteins in cell adhesion and membrane dynamics,” Trends in Cell Biology, vol. 9, no. 5, pp. 187–192, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Bretscher, K. Edwards, and R. G. Fehon, “ERM proteins and merlin: integrators at the cell cortex,” Nature Reviews Molecular Cell Biology, vol. 3, no. 8, pp. 586–599, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Algrain, O. Turunen, A. Vaheri, D. Louvard, and M. Arpin, “Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker,” Journal of Cell Biology, vol. 120, no. 1, pp. 129–140, 1993. View at Publisher · View at Google Scholar · View at Scopus
  64. O. Turunen, T. Wahlström, and A. Vaheri, “Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family,” Journal of Cell Biology, vol. 126, no. 6, pp. 1445–1453, 1994. View at Scopus
  65. M. D. Henry, C. G. Agosti, and F. Solomon, “Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains,” Journal of Cell Biology, vol. 129, no. 4, pp. 1007–1022, 1995. View at Scopus
  66. K. Pestonjamasp, M. R. Amieva, C. P. Strassel, W. M. Nauseef, H. Furthmayr, and E. J. Luna, “Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes,” Molecular Biology of the Cell, vol. 6, no. 3, pp. 247–259, 1995. View at Scopus
  67. A. H. Chishti, A. C. Kim, S. M. Marfatia et al., “The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane,” Trends in Biochemical Sciences, vol. 23, no. 8, pp. 281–282, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Hirao, N. Sato, T. Kondo et al., “Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and rho-dependent signaling pathway,” Journal of Cell Biology, vol. 135, no. 1, pp. 37–51, 1996. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Matsui, M. Maeda, Y. Doi et al., “Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association,” Journal of Cell Biology, vol. 140, no. 3, pp. 647–657, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Zimprich, S. Biskup, P. Leitner et al., “Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology,” Neuron, vol. 44, no. 4, pp. 601–607, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Paisán-Ruíz, S. Jain, E. W. Evans et al., “Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease,” Neuron, vol. 44, no. 4, pp. 595–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. D. MacLeod, J. Dowman, R. Hammond, T. Leete, K. Inoue, and A. Abeliovich, “The familial parkinsonism gene LRRK2 regulates neurite process morphology,” Neuron, vol. 52, no. 4, pp. 587–593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Bradke and C. G. Dotti, “The role of local actin instability in axon formation,” Science, vol. 283, no. 5409, pp. 1931–1934, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Bradke and C. G. Dotti, “Changes in membrane trafficking and actin dynamics during axon formation in cultured hippocampal neurons,” Microscopy Research and Technique, vol. 48, no. 1, pp. 3–11, 2000.