About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 358136, 15 pages
http://dx.doi.org/10.1155/2014/358136
Review Article

Contrast Media Viscosity versus Osmolality in Kidney Injury: Lessons from Animal Studies

Institute of Physiology and Center for Cardiovascular Research, Charité-University Medicine Berlin, Campus Mitte, Hessische Straße 3-4, 10115 Berlin, Germany

Received 18 October 2013; Accepted 29 December 2013; Published 23 February 2014

Academic Editor: Richard Solomon

Copyright © 2014 Erdmann Seeliger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Calvin, S. Misra, and A. Pflueger, “Contrast-induced acute kidney injury and diabetic nephropathy,” Nature Reviews Nephrology, vol. 6, no. 11, pp. 679–688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Bagshaw and B. F. Culleton, “Contrast-induced nephropathy: epidemiology and prevention,” Minerva Cardioangiologica, vol. 54, no. 1, pp. 109–129, 2006. View at Scopus
  3. R. Solomon and H. L. Dauerman, “Contrast-induced acute kidney injury,” Circulation, vol. 122, no. 23, pp. 2451–2455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. T. James, S. M. Samuel, M. A. Manning, et al., “Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis,” Circulation, vol. 6, pp. 37–43, 2013.
  5. M. M. Waybill and P. N. Waybill, “Contrast media-induced nephrotoxicity: identification of patients at risk and algorithms for prevention,” Journal of Vascular and Interventional Radiology, vol. 12, no. 1, pp. 3–9, 2001. View at Scopus
  6. P. A. McCullough, “Radiocontrast-induced acute kidney injury,” Nephron, vol. 109, no. 4, pp. 61–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Seeliger, M. Sendeski, C. S. Rihal, and P. B. Persson, “Contrast-induced kidney injury: mechanisms, risk factors, and prevention,” European Heart Journal, vol. 33, pp. 2007–2015, 2012.
  8. F. Stacul, A. J. van der Molen, P. Reimer et al., “Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines,” European Radiology, vol. 21, no. 12, pp. 2527–2541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. American College of Radiology, “Committee on drugs and contrast media,” ACR Manual on Contrast Media Version 9, 2013.
  10. R. Solomon and A. Segal, “Defining acute kidney injury: what is the most appropriate metric?” Nature Clinical Practice Nephrology, vol. 4, no. 4, pp. 208–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. McCullough, A. D. Shaw, M. Haase, et al., “Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference,” Contributions to Nephrology, vol. 182, pp. 13–29, 2013.
  12. S. S. Waikar and J. V. Bonventre, “Creatinine kinetics and the definition of acute kidney injury,” Journal of the American Society of Nephrology, vol. 20, no. 3, pp. 672–679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Bruce, A. Djamali, K. Shinki, S. J. Michel, J. P. Fine, and M. A. Pozniak, “Background fluctuation of kidney function versus contrast-induced nephrotoxicity,” The American Journal of Roentgenology, vol. 192, no. 3, pp. 711–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. W. Katzberg and J. H. Newhouse, “Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe?” Radiology, vol. 256, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Russo, R. Minutolo, B. Cianciaruso, B. Memoli, G. Conte, and L. De Nicola, “Early effects of contrast media on renal hemodynamics and tubular function in chronic renal failure,” Journal of the American Society of Nephrology, vol. 6, no. 5, pp. 1451–1458, 1995. View at Scopus
  16. G. L. Bakris, N. A. Lass, and D. Glock, “Renal hemodynamics in radiocontrast medium-induced renal dysfunction: a role for dopamine-1 receptors,” Kidney International, vol. 56, no. 1, pp. 206–210, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. S. D. Weisbord and P. M. Palevsky, “Acute kidney injury: kidney injury after contrast media: marker or mediator?” Nature Reviews Nephrology, vol. 6, no. 11, pp. 634–636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. J. Harjai, A. Raizada, C. Shenoy et al., “A comparison of contemporary definitions of contrast nephropathy in patients undergoing percutaneous coronary intervention and a proposal for a novel nephropathy grading system,” The American Journal of Cardiology, vol. 101, no. 6, pp. 812–819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Budano, M. Levis, M. D'Amico et al., “Impact of contrast-induced acute kidney injury definition on clinical outcomes,” The American Heart Journal, vol. 161, no. 5, pp. 963–971, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Li and R. J. Solomon, “Creatinine increases after intravenous contrast administration: incidence and impact,” Investigative Radiology, vol. 45, no. 8, pp. 471–476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Reddan, M. Laville, and V. D. Garovic, “Contrast-induced nephropathy and its prevention: what do we really know from evidence-based findings?” Journal of Nephrology, vol. 22, no. 3, pp. 333–351, 2009. View at Scopus
  22. P. A. McCullough, “Acute kidney injury with iodinated contrast,” Critical Care Medicine, vol. 36, supplement 4, pp. S204–S211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. D. Weisbord and P. M. Palevsky, “Prevention of contrast-induced nephropathy with volume expansion,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 273–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Fischereder, “Use of intravenous sodium bicarbonate might increase the risk of contrast nephropathy,” Nature Clinical Practice Nephrology, vol. 4, no. 6, pp. 296–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. T. van Praet and A. S. de Vriese, “Prevention of contrast-induced nephropathy: a critical review,” Current Opinion in Nephrology and Hypertension, vol. 16, no. 4, pp. 336–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. H. Newhouse and A. RoyChoudhury, “Quantitating contrast medium-induced nephropathy: controlling the controls,” Radiology, vol. 267, pp. 4–8, 2013.
  27. R. J. McDonald, J. S. McDonald, J. P. Bida, et al., “Intravenous contrast material-induced nephropathy: causal or coincident phenomenon?” Radiology, vol. 267, pp. 106–118, 2013.
  28. M. S. Davenport, S. Khalatbari, J. R. Dillman, R. H. Cohan, E. M. Caoili, and J. H. Ellis, “Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material,” Radiology, vol. 267, pp. 94–105, 2013.
  29. J. Vanmassenhove, R. Vanholder, E. Nagler, and B. W. Van, “Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature,” Nephrology Dialysis Transplantation, vol. 28, pp. 254–273, 2013.
  30. C. Ronco, F. Stacul, and P. A. McCullough, “Subclinical acute kidney injury (AKI) due to iodine-based contrast media,” European Radiology, vol. 23, pp. 319–323, 2013.
  31. U. Speck, “X-ray contrast media: physico-chemical properties,” in Textbook of Contrast Media, P. Dawson, D. O. Cosgrove, and R. G. Grainger, Eds., pp. 35–46, Informa Health Care, Oxford, UK, 1999.
  32. N. Pannu, N. Wiebe, and M. Tonelli, “Prophylaxis strategies for contrast-induced nephropathy,” Journal of the American Medical Association, vol. 295, no. 23, pp. 2765–2779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Tumlin, F. Stacul, A. Adam et al., “Pathophysiology of contrast-induced nephropathy,” The American Journal of Cardiology, vol. 98, no. 6, pp. 14–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Jost, P. Lengsfeld, D. C. Lenhard, H. Pietsch, J. Hütter, and M. A. Sieber, “Viscosity of iodinated contrast agents during renal excretion,” European Journal of Radiology, vol. 80, no. 2, pp. 373–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Jost, H. Pietsch, J. Sommer et al., “Retention of iodine and expression of biomarkers for renal damage in the kidney after application of iodinated contrast media in rats,” Investigative Radiology, vol. 44, no. 2, pp. 114–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Stratta, M. Quaglia, A. Airoldi, and S. Aime, “Structure-function relationships of iodinated contrast media and risk of nephrotoxicity,” Current Medicinal Chemistry, vol. 19, no. 5, pp. 736–743, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Dyvik, K. Dyrstad, and A. Tronstad, “Relationship between viscosity and determined injection pressure in angiography catheters for common roentgen contrast media,” Acta Radiologica, vol. 399, pp. 43–49, 1995. View at Scopus
  38. R. Eloy, C. Corot, and J. Belleville, “Contrast media for angiography: physicochemical properties, pharmacokinetics and biocompatibility,” Clinical Materials, vol. 7, no. 2, pp. 89–197, 1991. View at Scopus
  39. E. Seeliger, K. Becker, M. Ladwig, T. Wronski, P. B. Persson, and B. Flemming, “Up to 50-fold increase in urine viscosity with iso-osmolar contrast media in the rat,” Radiology, vol. 256, no. 2, pp. 406–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. C. Lenhard, A. L. Frisk, P. Lengsfeld, H. Pietsch, and G. Jost, “The effect of iodinated contrast agent properties on renal kinetics and oxygenation,” Investigative Radiology, vol. 48, pp. 175–182, 2013.
  41. J. Ueda, T. Furukawa, K. Higashino et al., “Urine viscosity after injections of iotrolan or iomeprol,” Acta Radiologica, vol. 38, no. 6, pp. 1079–1082, 1997. View at Scopus
  42. E. Lancelot, J. M. Idée, C. Laclédère, R. Santus, and C. Corot, “Effects of two dimeric iodinated contrast media on renal medullary blood perfusion and oxygenation in dogs,” Investigative Radiology, vol. 37, no. 7, pp. 368–375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Ueda, A. Nygren, M. Sjöquist, E. Jacobsson, H. R. Ulfendahl, and Y. Araki, “Iodine concentrations in the rat kidney measured by x-ray microanalysis: comparison of concentrations and viscosities in the proximal tubules and renal pelvis after intravenous injections of contrast media,” Acta Radiologica, vol. 39, no. 1, pp. 90–95, 1998. View at Scopus
  44. E. Seeliger, B. Flemming, T. Wronski et al., “Viscosity of contrast media perturbs renal hemodynamics,” Journal of the American Society of Nephrology, vol. 18, no. 11, pp. 2912–2920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Ladwig, B. Flemming, E. Seeliger, L. Sargsyan, and P. B. Persson, “Renal effects of bicarbonate versus saline infusion for iso-and lowosmolar contrast media in rats,” Investigative Radiology, vol. 46, no. 11, pp. 672–677, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Seeliger, M. Ladwig, L. Sargsyan, K. Cantow, P. B. Persson, and B. Flemming, “Proof of principle: hydration by low-osmolar mannitol-glucose solution alleviates undesirable renal effects of an iso-osmolar contrast medium in rats,” Investigative Radiology, vol. 47, no. 4, pp. 240–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Berl and G. L. Robertson, “Pathophysiology of water metabolism,” in The Kidney, B. M. Brenner, Ed., pp. 866–924, Saunders, Philadelphia, Pa, USA, 2000.
  48. H. W. Reinhardt and E. Seeliger, “Toward an integrative concept of control of total body sodium,” News in Physiological Sciences, vol. 15, no. 6, pp. 319–325, 2000. View at Scopus
  49. E. Seeliger, T. Lunenburg, M. Ladwig, and H. W. Reinhardt, “Role of the renin-angiotensin-aldosterone system for control of arterial blood pressure following moderate deficit in total body sodium: balance studies in freely moving dogs,” Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 2, pp. e43–e51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. W. L. Kenney and P. Chiu, “Influence of age on thirst and fluid intake,” Medicine and Science in Sports and Exercise, vol. 33, no. 9, pp. 1524–1532, 2001. View at Scopus
  51. S. D. Weisbord, M. K. Mor, A. L. Resnick et al., “Prevention, incidence, and outcomes of contrast-induced acute kidney injury,” Archives of Internal Medicine, vol. 168, no. 12, pp. 1325–1332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Jost, D. C. Lenhard, M. A. Sieber, P. Lengsfeld, J. Hütter, and H. Pietsch, “Changes of renal water diffusion coefficient after application of iodinated contrast agents: effect of viscosity,” Investigative Radiology, vol. 46, no. 12, pp. 796–800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Ueda, A. Nygren, P. Hansell, and H. R. Ulfendahl, “Effect of intravenous contrast media on proximal and distal tubular hydrostatic pressure in the rat kidney,” Acta Radiologica, vol. 34, no. 1, pp. 83–87, 1993. View at Scopus
  54. J. Ueda, A. Nygren, P. Hansell, and U. Erikson, “Influence of contrast media on single nephron glomerular filtration rate in rat kidney: a comparison between diatrizoate, iohexol, ioxaglate, and iotrolan,” Acta Radiologica, vol. 33, no. 6, pp. 596–599, 1992. View at Scopus
  55. Z. Z. Liu, V. U. Viegas, A. Perlewitz, et al., “Iodinated contrast media differentially affect afferent and efferent arteriolar tone and reactivity in mice: a possible explanation for reduced glomerular filtration rate,” Radiology, vol. 265, pp. 762–771, 2012.
  56. K. Arakelyan, K. Cantow, J. Hentschel, et al., “Early effects of an x-ray contrast medium on renal T2*/T2 MRI as compared to short-term hyperoxia, hypoxia and aortic occlusion in rats,” Acta Physiologica, vol. 208, pp. 202–213, 2013.
  57. A. A. Khraibi and F. G. Knox, “Effect of renal decapsulation on renal interstitial hydrostatic pressure and natriuresis,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 257, no. 1, pp. R44–R48, 1989. View at Scopus
  58. D. C. Lenhard, H. Pietsch, M. A. Sieber, et al., “The osmolality of nonionic, iodinated contrast agents as an important factor for renal safety,” Investigative Radiology, vol. 47, pp. 503–510, 2012.
  59. G. Jost, H. Pietsch, P. Lengsfeld, J. Hütter, and M. A. Sieber, “The impact of the viscosity and osmolality of iodine contrast agents on renal elimination,” Investigative Radiology, vol. 45, no. 5, pp. 255–261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Dobrota, C. J. Powell, E. Holtz, A. Wallin, and H. Vik, “Biochemical and morphological effects of contrast media on the kidney,” Acta Radiologica, vol. 399, pp. 196–203, 1995. View at Scopus
  61. M. C. Heinrich, M. K. Kuhlmann, A. Grgic, M. Heckmann, B. Kramann, and M. Uder, “Cytotoxic effects of ionic high-osmolar, nonionic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro,” Radiology, vol. 235, no. 3, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Wasaki, J. Sugimoto, and K. Shirota, “Glucose alters the susceptibility of mesangial cells to contrast media,” Investigative Radiology, vol. 36, no. 7, pp. 355–362, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Investigative Radiology, vol. 37, no. 8, pp. 428–434, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. N. F. Fanning, B. J. Manning, J. Buckley, and H. P. Redmond, “Iodinated contrast media induce neutrophil apoptosis through a mitochondrial and caspase mediated pathway,” British Journal of Radiology, vol. 75, no. 899, pp. 861–873, 2002. View at Scopus
  65. A. I. Lim, S. C. Tang, K. N. Lai, and J. C. Leung, “Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells?” Journal of Cellular Physiology, vol. 228, pp. 917–924, 2013.
  66. M. Haase, A. Haase-Fielitz, R. Bellomo, and P. R. Mertens, “Neutrophil gelatinase-associated lipocalin as a marker of acute renal disease,” Current Opinion in Hematology, vol. 18, no. 1, pp. 11–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Singer, L. Marko, N. Paragas, et al., “Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications,” Acta Physiologica, vol. 207, pp. 663–672, 2013.
  68. H. Ha, E. Y. Oh, and H. B. Lee, “The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases,” Nature Reviews Nephrology, vol. 5, no. 4, pp. 203–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. B. L. Cavanagh, T. Walker, A. Norazit, and A. C. B. Meedeniya, “Thymidine analogues for tracking DNA synthesis,” Molecules, vol. 16, no. 9, pp. 7980–7993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. P. B. Persson, P. Hansell, and P. Liss, “Pathophysiology of contrast medium-induced nephropathy,” Kidney International, vol. 68, no. 1, pp. 14–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. R. G. Evans, C. Ince, J. A. Joles, et al., “Haemodynamic influences on kidney oxygenation: the clinical implications of integrative physiology,” Clinical and Experimental Pharmacology and Physiology, vol. 40, pp. 106–122, 2013.
  72. S. N. Heyman, S. Rosen, M. Khamaisi, J. M. Idée, and C. Rosenberger, “Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy,” Investigative Radiology, vol. 45, no. 4, pp. 188–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. D. Okusa, B. L. Jaber, P. Doran, et al., “Physiological biomarkers of acute kidney injury: a conceptual approach to improving outcomes,” Contributions to Nephrology, vol. 182, pp. 65–81, 2013.
  74. T. M. Kennedy-Lydon, C. Crawford, S. S. Wildman, and C. M. Peppiatt-Wildman, “Renal pericytes: regulators of medullary blood flow,” Acta Physiologica, vol. 207, pp. 212–225, 2013.
  75. M. Sendeski, A. Patzak, T. L. Pallone, C. Cao, A. E. Persson, and P. B. Persson, “Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy,” Radiology, vol. 251, no. 3, pp. 697–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Sendeski, A. Patzak, and P. B. Persson, “Constriction of the vasa recta, the vessels supplying the area at risk for acute kidney injury, by four different iodinated contrast media, evaluating ionic, nonionic, monomeric and dimeric agents,” Investigative Radiology, vol. 45, no. 8, pp. 453–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. M. M. Sendeski, P. A. Bondke, Z. Z. Liu, et al., “Iodinated contrast media cause endothelial damage leading to vasoconstriction of human and rat vasa recta,” The American Journal of Physiology—Renal Physiology, vol. 303, pp. F1592–F1598, 2012.
  78. G. Aliev, M. E. Obrenovich, D. Seyidova et al., “X-ray contrast media induce aortic endothelial damage, which can be prevented with prior heparin treatment,” Journal of Submicroscopic Cytology and Pathology, vol. 35, no. 3, pp. 253–266, 2003. View at Scopus
  79. M. T. Gladwin, “Role of the red blood cell in nitric oxide homeostasis and hypoxic vasodilation,” Advances in Experimental Medicine and Biology, vol. 588, pp. 189–205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Seeliger, K. Cantow, K. Arakelyan, M. Ladwig, P. B. Persson, and B. Flemming, “Low-dose nitrite alleviates early effects of an x-ray contrast medium on renal hemodynamics and oxygenation in rats,” Investigative Radiology, vol. 49, no. 2, pp. 70–77, 2014. View at Publisher · View at Google Scholar
  81. E. Lancelot, J. M. Idee, V. Couturier, V. Vazin, and C. Corot, “Influence of the viscosity of iodixanol on medullary and cortical blood flow in the rat kidney: a potential cause of Nephrotoxicity,” Journal of Applied Toxicology, vol. 19, pp. 341–346, 1999.
  82. P. Liss, A. Nygren, and P. Hansell, “Hypoperfusion in the renal outer medulla after injection of contrast media in rats,” Acta Radiologica, vol. 40, no. 5, pp. 521–527, 1999. View at Scopus
  83. P. Liss, A. Nygren, U. Erikson, and H. R. Ulfendahl, “Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla,” Kidney International, vol. 53, no. 3, pp. 698–702, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. H. J. Schurek, “Medullary hypoxia: a key to understand acute renal failure?” Klinische Wochenschrift, vol. 66, no. 18, pp. 828–835, 1988. View at Scopus
  85. A. Pohlmann, K. Cantow, J. Hentschel, et al., “Linking non-invasive parametric MRI with invasive physiological measurements (MR-PHYSIOL): towards a hybrid and integrated approach for investigation of acute kidney injury in rats,” Acta Physiologica, vol. 207, pp. 673–689, 2012.
  86. R. G. Evans, B. S. Gardiner, D. W. Smith, and P. M. O'Connor, “Methods for studying the physiology of kidney oxygenation,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 12, pp. 1405–1412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Zhang, J. Wang, X. Yang, et al., “The serial effect of iodinated contrast media on renal hemodynamics and oxygenation as evaluated by ASL and BOLD MRI,” Contrast Media and Molecular Imaging, vol. 7, pp. 418–425, 2012.
  88. S. Haneder, J. Augustin, G. Jost et al., “Impact of Iso-and low-osmolar iodinated contrast agents on BOLD and diffusion MRI in swine kidneys,” Investigative Radiology, vol. 47, no. 5, pp. 299–305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. L. P. Li, T. Franklin, H. Du, et al., “Intrarenal oxygenation by blood oxygenation level-dependent MRI in contrast nephropathy model: effect of the viscosity and dose,” Journal of Magnetic Resonance Imaging, vol. 36, pp. 1162–1167, 2012.
  90. M. Dickenmann, T. Oettl, and M. J. Mihatsch, “Osmotic Nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes,” The American Journal of Kidney Diseases, vol. 51, no. 3, pp. 491–503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. M. C. Heinrich, “Osmotic nephrosis and contrast media,” The American Journal of Kidney Diseases, vol. 52, no. 3, p. 629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. S. N. Heyman, M. Brezis, F. H. Epstein, K. Spokes, P. Silva, and S. Rosen, “Early renal medullary hypoxic injury from radiocontrast and indomethacin,” Kidney International, vol. 40, no. 4, pp. 632–642, 1991. View at Scopus
  93. P. Liss, A. Nygren, H. R. Ulfendahl, and U. Erikson, “Effect of furosemide or mannitol before injection of a non-ionic contrast medium on intrarenal oxygen tension,” Advances in Experimental Medicine and Biology, vol. 471, pp. 353–359, 1999. View at Scopus
  94. S. K. Morcos, P. Dawson, J. D. Pearson et al., “The haemodynamic effects of iodinated water soluble radiographic contrast media: a review,” European Journal of Radiology, vol. 29, no. 1, pp. 31–46, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Liss, A. Nygren, U. Olsson, H. R. Ulfendahl, and U. Erikson, “Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney,” Kidney International, vol. 49, no. 5, pp. 1268–1275, 1996. View at Scopus
  96. M. R. Rudnick, S. Goldfarb, L. Wexler et al., “Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial,” Kidney International, vol. 47, no. 1, pp. 254–261, 1995. View at Scopus
  97. M. Reed, P. Meier, U. U. Tamhane, K. B. Welch, M. Moscucci, and H. S. Gurm, “The relative renal safety of iodixanol compared with low-osmolar contrast media. A meta-analysis of randomized controlled trials,” JACC Cardiovascular Interventions, vol. 2, no. 7, pp. 645–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. M. C. Heinrich, L. Häberle, V. Müller, W. Bautz, and M. Uder, “Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials,” Radiology, vol. 250, no. 1, pp. 68–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. A. M. From, F. J. Al Badarin, F. S. McDonald, B. J. Bartholmai, S. S. Cha, and C. S. Rihal, “Iodixanol versus low-osmolar contrast media for prevention of contrast induced nephropathy meta-analysis of randomized, controlled trials,” Circulation, vol. 3, no. 4, pp. 351–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Liss, P. B. Persson, P. Hansell, and B. Lagerqvist, “Renal failure in 57 925 patients undergoing coronary procedures using iso-osmolar or low-osmolar contrast media,” Kidney International, vol. 70, no. 10, pp. 1811–1817, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. M. C. Reed, M. Moscucci, D. E. Smith et al., “The relative renal safety of iodixanol and low-osmolar contrast media in patients undergoing percutaneous coronary intervention. Insights from blue cross blue shield of Michigan cardiovascular consortium (BMC2),” Journal of Invasive Cardiology, vol. 22, no. 10, pp. 467–472, 2010. View at Scopus
  102. H. S. Thomsen, S. K. Morcos, and B. J. Barrett, “Contrast-induced nephropathy: the wheel has turned 360 degrees,” Acta Radiologica, vol. 49, no. 6, pp. 646–657, 2008. View at Publisher · View at Google Scholar · View at Scopus