About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 361048, 9 pages
http://dx.doi.org/10.1155/2014/361048
Research Article

Differential Gene Expression in High- and Low-Active Inbred Mice

1Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA
2Sydney and JL Huffines Institute for Sports Medicine and Human Performance, Texas A&M University, College Station, TX 77843, USA
3Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA
4Department of Animal Science, Texas A&M University, College Station, TX 77843, USA

Received 15 October 2013; Accepted 15 December 2013; Published 16 January 2014

Academic Editor: Jaakko Kaprio

Copyright © 2014 Michelle Dawes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. K. Roberts and R. J. Barnard, “Effects of exercise and diet on chronic disease,” Journal of Applied Physiology, vol. 98, no. 1, pp. 3–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. B. R. Belcher, D. Berrigan, K. W. Dodd, B. A. Emken, C.-P. Chou, and D. Spruijt-Metz, “Physical activity in US youth: effect of race/ethnicity, age, gender, and weight status,” Medicine and Science in Sports and Exercise, vol. 42, no. 12, pp. 2211–2221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. P. Troiano, D. Berrigan, K. W. Dodd, L. C. Mâsse, T. Tilert, and M. Mcdowell, “Physical activity in the United States measured by accelerometer,” Medicine and Science in Sports and Exercise, vol. 40, no. 1, pp. 181–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Rankinen and C. Bouchard, “Invited commentary: physical activity, mortality, and genetics,” American Journal of Epidemiology, vol. 166, no. 3, pp. 260–262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. W. Festing, “Wheel activity in 26 strains of mouse,” Laboratory Animals, vol. 11, no. 4, pp. 257–258, 1977. View at Scopus
  6. A. M. Joosen, M. Gielen, R. Vlietinck, and K. R. Westerterp, “Genetic analysis of physical activity in twins,” American Journal of Clinical Nutrition, vol. 82, no. 6, pp. 1253–1259, 2005. View at Scopus
  7. J. M. Kaprio, M. Koskenvuo, and S. Sarna, “Cigarette smoking, use of alcohol and leisure-time activity among same-sexed adult male twins,” in Twin Research 3: Epidemiological and Clinical Studies, L. Gedda, P. Parisi, and W. E. Nance, Eds., Progress in Clinical and Biological Research, pp. 37–46, Alan R. Liss, New York, NY, USA, 1981.
  8. D. S. Lauderdale, R. Fabsitz, J. M. Meyer, P. Sholinsky, V. Ramakrishnan, and J. Goldberg, “Familial determinants of moderate and intense physical activity: a twin study,” Medicine and Science in Sports and Exercise, vol. 29, no. 8, pp. 1062–1068, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Lerman, B. C. Harrison, K. Freeman et al., “Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains,” Journal of Applied Physiology, vol. 92, no. 6, pp. 2245–2255, 2002. View at Scopus
  10. J. T. Lightfoot, L. Leamy, D. Pomp et al., “Strain screen and haplotype association mapping of wheel running in inbred mouse strains,” Journal of Applied Physiology, vol. 109, no. 3, pp. 623–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. T. Lightfoot, M. J. Turner, M. Daves, A. Vordermark, and S. R. Kleeberger, “Genetic influence on daily wheel running activity level,” Physiological Genomics, vol. 19, pp. 270–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. T. Lightfoot, M. J. Turner, D. Pomp, S. R. Kleeberger, and L. J. Leamy, “Quantitative trait loci for physical activity traits in mice,” Physiological Genomics, vol. 32, no. 3, pp. 401–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. Stubbe, D. I. Boomsma, J. M. Vink et al., “Genetic influences on exercise participation in 37.051 twin pairs from seven countries,” Plos One, vol. 1, no. 1, article e22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. H. Stubbe, D. I. Boomsma, and E. J. C. De Geus, “Sports participation during adolescence: a shift from environmental to genetic factors,” Medicine and Science in Sports and Exercise, vol. 37, no. 4, pp. 563–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. G. Swallow, T. Garland Jr., P. A. Carter, W.-Z. Zhan, and G. C. Sieck, “Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus),” Journal of Applied Physiology, vol. 84, no. 1, pp. 69–76, 1998. View at Scopus
  16. J. Flint, W. Valdar, S. Shifman, and R. Mott, “Strategies for mapping and cloning quantitative trait genes in rodents,” Nature Reviews Genetics, vol. 6, no. 4, pp. 271–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K. DiPetrillo, X. Wang, I. M. Stylianou, and B. Paigen, “Bioinformatics toolbox for narrowing rodent quantitative trait loci,” Trends in Genetics, vol. 21, no. 12, pp. 683–692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. J. Good, C. A. Coyle, and D. L. Fox, “Nhlh2: a basic helix-loop-helix transcription factor controlling physical activity,” Exercise and Sport Sciences Reviews, vol. 36, no. 4, pp. 187–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. S. Rhodes and T. Garland Jr., “Differential sensitivity to acute administration of Ritalin, apormorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-running behavior,” Psychopharmacology, vol. 167, no. 3, pp. 242–250, 2003. View at Scopus
  20. K. A. Frazer, E. Eskin, H. M. Kang et al., “A sequence-based variation map of 8.27 million SNPs in inbred mouse strains,” Nature, vol. 448, no. 7157, pp. 1050–1053, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Hartmann, T. Garland, R. M. Hannon, S. A. Kelly, G. Muñoz, and D. Pomp, “Fine mapping of “mini-muscle,” a recessive mutation causing reduced hindlimb muscle mass in mice,” Journal of Heredity, vol. 99, no. 6, pp. 679–687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Kelly, D. L. Nehrenberg, J. L. Peirce et al., “Genetic architecture of voluntary exercise in an advanced intercross line of mice,” Physiological Genomics, vol. 42, no. 2, pp. 190–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. J. Leamy, D. Pomp, and J. T. Lightfoot, “An epistatic genetic basis for physical activity traits in mice,” Journal of Heredity, vol. 99, no. 6, pp. 639–646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. L. Nehrenberg, S. Wang, R. M. Hannon, T. Garland, and D. Pomp, “QTL underlying voluntary exercise in mice: interactions with the “mini muscle” locus and sex,” Journal of Heredity, vol. 101, no. 1, pp. 42–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Knab, R. S. Bowen, A. T. Hamilton, A. A. Gulledge, and J. T. Lightfoot, “Altered dopaminergic profiles: implications for the regulation of voluntary physical activity,” Behavioural Brain Research, vol. 204, no. 1, pp. 147–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Knab, R. S. Bowen, A. T. Hamilton, and J. T. Lightfoot, “Pharmacological manipulation of the dopaminergic system affects wheel-running activity in differentially active mice,” Journal of Biological Regulators and Homeostatic Agents, vol. 26, no. 1, pp. 119–129, 2012. View at Scopus
  27. J. T. Lightfoot, “Can you be born a couch potato? The genomic regulation of physical activity,” in Exercise Genomics, L. S. Pescatello and S. M. Roth, Eds., Molecular and Translational Medicine, pp. 45–72, Humana Press, New York, NY, USA, 2011. View at Publisher · View at Google Scholar
  28. R. M. Murphy, N. T. Larkins, J. P. Mollica, N. A. Beard, and G. D. Lamb, “Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast—and slow-twitch fibres of rat,” Journal of Physiology, vol. 587, no. 2, pp. 443–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. L. Simonen, T. Rankinen, L. Pérusse et al., “A dopamine D2 receptor gene polymorphism and physical activity in two family studies,” Physiology and Behavior, vol. 78, no. 4-5, pp. 751–757, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Richert, T. Chevalley, D. Manen, J.-P. Bonjour, R. Rizzoli, and S. Ferrari, “Bone mass in prepubertal boys is associated with a Gln223Arg amino acid substitution in the leptin receptor,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 11, pp. 4380–4386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Cai, S. A. Cole, N. Butte et al., “A quantitative trait locus on chromosome 18q for physical activity and dietary intake in Hispanic children,” Obesity, vol. 14, no. 9, pp. 1596–1604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. H. M. De Moor, Y.-J. Liu, D. I. Boomsma et al., “Genome-wide association study of exercise behavior in Dutch and American adults,” Medicine and Science in Sports and Exercise, vol. 41, no. 10, pp. 1887–1895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T.-S. Tsao, J. Li, K. S. Chang et al., “Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity,” The FASEB Journal, vol. 15, no. 6, pp. 958–969, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Yang, J. R. Wang, J. P. Didion et al., “Subspecific origin and haplotype diversity in the laboratory mouse,” Nature Genetics, vol. 43, no. 7, pp. 648–655, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Knab, R. S. Bowen, T. Moore-Harrison, A. T. Hamilton, M. J. Turner, and J. T. Lightfoot, “Repeatability of exercise behaviors in mice,” Physiology and Behavior, vol. 98, no. 4, pp. 433–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic Acids research, vol. 29, no. 9, article e45, 2001. View at Scopus
  37. S. Carlsson, T. Andersson, P. Lichtenstein, K. Michaëlsson, and A. Ahlbom, “Genetic effects on physical activity: results from the Swedish twin registry,” Medicine and Science in Sports and Exercise, vol. 38, no. 8, pp. 1396–1401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Perusse, A. Tremblay, C. Leblanc, and C. Bouchard, “Genetic and environmental influences on level of habitual physical activity and exercise participation,” American Journal of Epidemiology, vol. 129, no. 5, pp. 1012–1022, 1989. View at Scopus
  39. J. G. Swallow, P. A. Carter, and T. Garland Jr., “Artificial selection for increased wheel-running behavior in house mice,” Behavior Genetics, vol. 28, no. 3, pp. 227–237, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. A. M. Knab and J. T. Lightfoot, “Does the difference between physically active and couch potato lie in the dopamine system?” International Journal of Biological Sciences, vol. 6, no. 2, pp. 133–150, 2010. View at Scopus
  41. E. Szostak and F. Gebauer, “Translational control by 3′-UTR-binding proteins,” Briefings in Functional Genomics, vol. 12, no. 1, pp. 58–65, 2012. View at Publisher · View at Google Scholar
  42. L. J. Leamy, D. Pomp, and J. T. Lightfoot, “Genetic variation in the pleiotropic association between physical activity and body weight in mice,” Genetics Selection Evolution, vol. 41, no. 1, article 41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. L. J. Leamy, D. Pomp, and J. T. Lightfoot, “Epistatic interactions of genes influence within-individual variation of physical activity traits in mice,” Genetica, vol. 139, no. 6, pp. 813–821, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Allen and C. Messier, “Plastic changes in the astrocyte GLUT1 glucose transporter and beta-tubulin microtubule protein following voluntary exercise in mice,” Behavioural Brain Research, vol. 240, pp. 95–102, 2013. View at Publisher · View at Google Scholar
  45. V. G. Coffey and J. A. Hawley, “The molecular bases of training adaptation,” Sports Medicine, vol. 37, no. 9, pp. 737–763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Matsakas, A. Friedel, T. Hertrampf, and P. Diel, “Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat,” Acta Physiologica Scandinavica, vol. 183, no. 3, pp. 299–307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Schiffer, S. Geisler, B. Sperlich, and H. K. Strüder, “MSTN mRNA after varying exercise modalities in humans,” International Journal of Sports Medicine, vol. 32, no. 9, pp. 683–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Kinnunen and S. Mänttäri, “Specific effects of endurance and sprint training on protein expression of calsequestrin and SERCA in mouse skeletal muscle,” Journal of Muscle Research and Cell Motility, vol. 33, no. 22, pp. 123–130, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. J. C. Crabbe, D. Wahlsten, and B. C. Dudek, “Genetics of mouse behavior: interactions with laboratory environment,” Science, vol. 284, no. 5420, pp. 1670–1672, 1999. View at Publisher · View at Google Scholar · View at Scopus