About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 371397, 9 pages
http://dx.doi.org/10.1155/2014/371397
Research Article

Identifying Gastric Cancer Related Genes Using the Shortest Path Algorithm and Protein-Protein Interaction Network

1Colorectal Surgery Department, China-Japan Union Hospital of Jilin University, Changchun 130033, China
2State Key Laboratory of Medical Genomics, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Shanghai 200025, China
3Breast and Thyroid Surgery Department, The Second Hospital of Jilin University, Changchun 130041, China
4Colorectal Surgery Department, The Second Hospital of Jilin University, Changchun 130041, China

Received 29 December 2013; Accepted 3 February 2014; Published 5 March 2014

Academic Editor: Tao Huang

Copyright © 2014 Yang Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Estimating the world cancer burden: globocan 2000,” International Journal of Cancer, vol. 94, no. 2, pp. 153–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Ferlay, H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: globocan 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Palli, “Epidemiology of gastric cancer: an evaluation of available evidence,” Journal of Gastroenterology, vol. 35, supplement 12, pp. 84–89, 2000. View at Scopus
  4. E. M. El-Omar, M. Carrington, W.-H. Chow et al., “Interleukin-1 polymorphisms associated with increased risk of gastric cancer,” Nature, vol. 404, no. 6776, pp. 398–402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Nomura, J. S. Grove, G. N. Stemmermann, and R. K. Severson, “Cigarette smoking and stomach cancer,” Cancer Research, vol. 50, article 7084, 1990. View at Scopus
  6. N. Y. Sung, K. S. Choi, E. C. Park et al., “Smoking, alcohol and gastric cancer risk in Korean men: the National Health Insurance Corporation Study,” British Journal of Cancer, vol. 97, no. 5, pp. 700–704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Chandanos and J. Lagergren, “Oestrogen and the enigmatic male predominance of gastric cancer,” European Journal of Cancer, vol. 44, no. 16, pp. 2397–2403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Lauren, “The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification,” Acta Pathologica et Microbiologica Scandinavica, vol. 64, pp. 31–49, 1965. View at Scopus
  9. C. Caldas, F. Carneiro, H. T. Lynch et al., “Familial gastric cancer: overview and guidelines for management,” Journal of Medical Genetics, vol. 36, no. 12, pp. 873–880, 1999. View at Scopus
  10. V. Kumar, A. K. Abbas, N. Fausto, and J. C. Aster, Robbins & Cotran Pathologic Basis of Disease, Elsevier Health Sciences, Philadelphia, Pa, USA, 2009.
  11. C. Maesawa, G. Tamura, Y. Suzuki et al., “The sequential accumulation of genetic alterations characteristic of the colorectal adenoma-carcinoma sequence does not occur between gastric adenoma and adenocarcinoma,” The Journal of Pathology, vol. 176, no. 3, pp. 249–258, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. K.-F. Becker, M. J. Atkinson, U. Reich et al., “E-cadherin gene mutations provide clues to diffuse type gastric carcinomas,” Cancer Research, vol. 54, no. 14, pp. 3845–3852, 1994. View at Scopus
  13. Q.-L. Li, K. Ito, C. Sakakura et al., “Causal relationship between the loss of RUNX3 expression and gastric cancer,” Cell, vol. 109, no. 1, pp. 113–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Chen, W.-M. Zeng, Y.-D. Cai, K.-Y. Feng, and K.-C. Chou, “Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities,” PLoS ONE, vol. 7, no. 4, Article ID e35254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, “Prediction of drug-target interaction networks from the integration of chemical and genomic spaces,” Bioinformatics, vol. 24, no. 13, pp. i232–i240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Yamanishi, M. Kotera, M. Kanehisa, and S. Goto, “Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework,” Bioinformatics, vol. 26, no. 12, pp. i246–i254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. B. M. Padhy and Y. K. Gupta, “Drug repositioning: re-investigating existing drugs for new therapeutic indications,” Journal of Postgraduate Medicine, vol. 57, no. 2, pp. 153–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Chen, J. Lu, X. Luo, and K.-Y. Feng, “Prediction of drug target groups based on chemical-chemical similarities and chemical-chemical/protein connections,” Biochimica et Biophysica Acta, vol. 1844, no. 1, part B, pp. 207–213, 2014. View at Publisher · View at Google Scholar
  19. L. Chen, J. Lu, N. Zhang, T. Huang, and Y. Cai -D, “A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes,” Molecular BioSystems, 2014. View at Publisher · View at Google Scholar
  20. H.-W. Ma and A.-P. Zeng, “The connectivity structure, giant strong component and centrality of metabolic networks,” Bioinformatics, vol. 19, no. 11, pp. 1423–1430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Dale, L. Popescu, and P. D. Karp, “Machine learning methods for metabolic pathway prediction,” BMC Bioinformatics, vol. 11, article 15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Chen, T. Huang, X.-H. Shi, Y.-D. Cai, and K.-C. Chou, “Analysis of protein pathway networks using hybrid properties,” Molecules, vol. 15, no. 11, pp. 8177–8192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Huang, L. Chen, Y.-D. Cai, and K.-C. Chou, “Classification and analysis of regulatory pathways using graph property, biochemical and physicochemical property, and functional property,” PLoS ONE, vol. 6, no. 9, Article ID e25297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Chen, W.-M. Zeng, Y.-D. Cai, and T. Huang, “Prediction of metabolic pathway using graph property, chemical functional group and chemical structural set,” Current Bioinformatics, vol. 8, no. 2, pp. 200–207, 2013. View at Publisher · View at Google Scholar
  25. Y. F. Gao, L. Chen, Y. D. Cai, K. Y. Feng, T. Huang, and Y. Jiang, “Predicting metabolic pathways of small molecules and enzymes based on interaction information of chemicals and proteins,” PLoS ONE, vol. 7, no. 9, Article ID e45944, 2012. View at Publisher · View at Google Scholar
  26. L. Hu, T. Huang, X. Shi, W.-C. Lu, Y.-D. Cai, and K.-C. Chou, “Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties,” PLoS ONE, vol. 6, no. 1, Article ID e14556, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Sharan, I. Ulitsky, and R. Shamir, “Network-based prediction of protein function,” Molecular Systems Biology, vol. 3, no. 1, article 88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K.-L. Ng, J.-S. Ciou, and C.-H. Huang, “Prediction of protein functions based on function-function correlation relations,” Computers in Biology and Medicine, vol. 40, no. 3, pp. 300–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Bogdanov and A. K. Singh, “Molecular function prediction using neighborhood features,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 7, no. 2, pp. 208–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. L. J. Jensen, M. Kuhn, M. Stark et al., “STRING 8—a global view on proteins and their functional interactions in 630 organisms,” Nucleic Acids Research, vol. 37, supplement 1, pp. D412–D416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. T. H. Gormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Eds., Introduction to Algorithms, The MIT Press, Cambridge, Mass, USA, 1990.
  32. J. B. M. Craven, Markov Networks for Detecting Overlapping Elements in Sequence Data, The MIT Press, Cambridge, Mass, USA, 2005.
  33. J. Davis and M. Goadrich, “The relationship between precision-recall and ROC curves,” in Proceedings of the 23rd International Conference on Machine Learning (ICML '06), pp. 233–240, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Bunescu, R. Ge, R. J. Kate et al., “Comparative experiments on learning information extractors for proteins and their interactions,” Artificial Intelligence in Medicine, vol. 33, no. 2, pp. 139–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. E. Johnson and G. H. I. Wolfgang, “Predicting human safety: screening and computational approaches,” Drug Discovery Today, vol. 5, no. 10, pp. 445–454, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. B.-Q. Li, B. Niu, L. Chen et al., “Identifying chemicals with potential therapy of HIV based on protein-protein and protein-chemical interaction network,” PLoS ONE, vol. 8, no. 6, Article ID e65207, 2013. View at Publisher · View at Google Scholar
  37. L. Chen, B.-Q. Li, M.-Y. Zheng, J. Zhang, K.-Y. Feng, and Y.-D. Cai, “Prediction of effective drug combinations by chemical interaction, protein interaction and target enrichment of KEGG pathways,” BioMed Research International, vol. 2013, Article ID 723780, 10 pages, 2013. View at Publisher · View at Google Scholar
  38. J. Zhang, M. Jiang, F. Yuan et al., “Identification of age-related macular degeneration related genes by applying shortest path algorithm in protein-protein interaction network,” BioMed Research International, vol. 2013, Article ID 523415, 8 pages, 2013. View at Publisher · View at Google Scholar
  39. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. J. Clark, N. Homer, B. D. O'Connor et al., “U87MG decoded: the genomic sequence of a cytogenetically aberrant human cancer cell line,” PLoS Genetics, vol. 6, no. 1, Article ID e1000832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Teekakirikul, S. Eminaga, O. Toka et al., “Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β,” The Journal of Clinical Investigation, vol. 120, no. 10, pp. 3520–3529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Chu, K. Qu, F. Zhong, S. Artandi, and H. Chang, “Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions,” Molecular Cell, vol. 44, no. 4, pp. 667–678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Kalverda, H. Pickersgill, V. V. Shloma, and M. Fornerod, “Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm,” Cell, vol. 140, no. 3, pp. 360–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Mayshar, U. Ben-David, N. Lavon et al., “Identification and classification of chromosomal aberrations in human induced pluripotent stem cells,” Cell Stem Cell, vol. 7, no. 4, pp. 521–531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. S. J. Sanders, A. G. Ercan-Sencicek, V. Hus et al., “Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism,” Neuron, vol. 70, no. 5, pp. 863–885, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in multiple testing under dependency,” The Annals of Statistics, vol. 29, no. 4, pp. 919–1188, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Hohenberger and S. Gretschel, “Gastric cancer,” The Lancet, vol. 362, no. 9380, pp. 305–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Liu, Z. Li, S. Bai et al., “Mechanism of cancer cell adaptation to metabolic stress: proteomics identification of a novel thyroid hormone-mediated gastric carcinogenenic signaling pathway,” Molecular and Cellular Proteomics, vol. 8, no. 1, pp. 70–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. D. F. Sun, Y. J. Zhang, X. Q. Tian, Y. X. Chen, and J. Y. Fang, “Inhibition of mTOR signalling potentiates the effects of trichostatin A in human gastric cancer cell lines by promoting histone acetylation,” Cell Biology International, vol. 38, no. 1, pp. 50–63, 2014. View at Publisher · View at Google Scholar
  50. E. Tahara, “Genetic pathways of two types of gastric cancer,” IARC Scientific Publications, no. 157, pp. 327–349, 2004. View at Scopus
  51. J. Essers, A. F. Theil, C. Baldeyron et al., “Nuclear dynamics of PCNA in DNA replication and repair,” Molecular and Cellular Biology, vol. 25, no. 21, pp. 9350–9359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. O. Coqueret, “Linking cyclins to transcriptional control,” Gene, vol. 299, no. 1-2, pp. 35–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. J. K. Moore and J. E. Haber, “Cell cycle and genetic requirements of two pathways of nonhomologous end-Joining repair of double-strand breaks in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 16, no. 5, pp. 2164–2173, 1996. View at Scopus
  54. Y. Liu, R. Prasad, W. A. Beard et al., “Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase β,” The Journal of Biological Chemistry, vol. 282, no. 18, pp. 13532–13541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Naro and C. Sette, “Phosphorylation-mediated regulation of alternative splicing in cancer,” International Journal of Cell Biology, vol. 2013, Article ID 151839, 15 pages, 2013. View at Publisher · View at Google Scholar
  56. A. T. Look, “Oncogenic transcription factors in the human acute leukemias,” Science, vol. 278, no. 5340, pp. 1059–1064, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. Q.-L. Li, K. Ito, C. Sakakura et al., “Causal relationship between the loss of RUNX3 expression and gastric cancer,” Cell, vol. 109, no. 1, pp. 113–124, 2002.
  58. M. K. K. Shivji, M. K. Kenny, and R. D. Wood, “Proliferating cell nuclear antigen is required for DNA excision repair,” Cell, vol. 69, no. 2, pp. 367–374, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. G.-L. Moldovan, B. Pfander, and S. Jentsch, “PCNA, the maestro of the replication fork,” Cell, vol. 129, no. 4, pp. 665–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Prelich, C.-K. Tan, and M. Kostura, “Functional identity of proliferating cell nuclear antigen and a DNA polymerase-δ auxiliary protein,” Nature, vol. 326, no. 6112, pp. 517–520, 1987. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Hoege, B. Pfander, G.-L. Moldovan, G. Pyrowolakis, and S. Jentsch, “RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO,” Nature, vol. 419, no. 6903, pp. 135–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. M. K. K. Shivji, “Nucleotide excision repair DNA synthesis by DNA polymerase ε in the presence of PCNA, RFC, and RPA,” Biochemistry, vol. 34, no. 15, pp. 5011–5017, 1995. View at Publisher · View at Google Scholar · View at Scopus
  63. J. de Boer and J. H. J. Hoeijmakers, “Nucleotide excision repair and human syndromes,” Carcinogenesis, vol. 21, no. 3, pp. 453–460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Pascucci, M. D'Errico, E. Parlanti, S. Giovannini, and E. Dogliotti, “Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating,” Biochemistry, vol. 76, no. 1, pp. 4–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Ohyama, Y. Yonemura, and I. Miyazaki, “Proliferative activity and malignancy in human gastric cancers: significance of the proliferation rate and its clinical application,” Cancer, vol. 69, no. 2, pp. 314–321, 1992. View at Scopus
  66. R. G. Kuang, H. X. Wu, G. X. Hao, J. W. Wang, and C. J. Zhou, “Expression and significance of IGF-2, PCNA, MMP-7, and α-actin in gastric carcinoma with Lauren classification,” The Turkish Journal of Gastroenterology, vol. 24, no. 2, pp. 99–108, 2013.
  67. S. Jain, M. I. Filipe, P. A. Hall, N. Waseem, D. P. Lane, and D. A. Levison, “Prognostic value of proliferating cell nuclear antigen in gastric carcinoma,” Journal of Clinical Pathology, vol. 44, no. 8, pp. 655–659, 1991. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Ji, P. Zhao, and B. Huang, “Study of gastric carcinoma and PCNA and c-met gene abnormality,” Wei Sheng Yan Jiu, vol. 37, no. 4, pp. 479–482, 2008. View at Scopus
  69. H. Takamura, Y. Yonemura, L. Fonseca et al., “Correlation of DNA ploidy, c-erB-2 protein tissue status, level of PCNA expression and clinical outcome in gastric carcinomas,” Nihon Geka Gakkai Zasshi, vol. 96, no. 4, pp. 213–222, 1995. View at Scopus
  70. T. Motokura, T. Bloom, H. G. Kim et al., “A novel cyclin encoded by a bcl1-linked candidate oncogene,” Nature, vol. 350, no. 6318, pp. 512–515, 1991. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Jiang, S. M. Kahn, N. Tomita, Y.-J. Zhang, S.-H. Lu, and I. B. Weinstein, “Amplification and expression of the human cyclin D gene in esophageal cancer,” Cancer Research, vol. 52, no. 10, pp. 2980–2983, 1992. View at Scopus
  72. M. F. Buckley, K. J. E. Sweeney, J. A. Hamilton et al., “Expression and amplification of cyclin genes in human breast cancer,” Oncogene, vol. 8, no. 8, pp. 2127–2133, 1993. View at Scopus
  73. J. K. Kim and J. A. Diehl, “Nuclear cyclin D1: an oncogenic driver in human cancer,” Journal of Cellular Physiology, vol. 220, no. 2, pp. 292–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Malumbres, I. P. de Castro, M. I. Hernández, M. Jiménez, T. Corral, and A. Pellicer, “Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b),” Molecular and Cellular Biology, vol. 20, no. 8, pp. 2915–2925, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Serrano, E. Gomez-Lahoz, R. A. DePinho, D. Beach, and D. Bar-Sagi, “Inhibition of ras-induced proliferation and cellular transformation by p16(INK4),” Science, vol. 267, no. 5195, pp. 249–252, 1995. View at Publisher · View at Google Scholar · View at Scopus
  76. R. M. L. Zwijsen, E. Wientjens, R. Klompmaker, J. van der Sman, R. Bernards, and R. J. A. M. Michalides, “CDK-independent activation of estrogen receptor by cyclin D1,” Cell, vol. 88, no. 3, pp. 405–415, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. P. C. Fernandez, S. R. Frank, L. Wang et al., “Genomic targets of the human c-Myc protein,” Genes and Development, vol. 17, no. 9, pp. 1115–1129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. R. C. Sears, “The life cycle of c-Myc: from synthesis to degradation,” Cell Cycle, vol. 3, no. 9, pp. 1133–1137, 2004. View at Scopus
  79. H.-J. Chung and D. Levens, “c-myc expression: keep the noise down!,” Molecules and Cells, vol. 20, no. 2, pp. 157–166, 2005. View at Scopus
  80. E. V. Prochownik and Y. Li, “The ever expanding role for c-Myc in promoting genomic instability,” Cell Cycle, vol. 6, no. 9, pp. 1024–1029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. A. N. Milne, R. Sitarz, R. Carvalho, F. Carneiro, and G. J. A. Offerhaus, “Early onset gastric cancer: on the road to unraveling gastric carcinogenesis,” Current Molecular Medicine, vol. 7, no. 1, pp. 15–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Sakakura, T. Mori, T. Sakabe et al., “Gains, losses, and amplifications of genomic materials in primary gastric cancers analyzed by comparative genomic hybridization,” Genes Chromosomes Cancer, vol. 24, no. 4, pp. 299–305, 1999.
  83. S. Yang, H.-C. Jeung, H. J. Jeong et al., “Identification of genes with correlated patterns of variations in DNA copy number and gene expression level in gastric cancer,” Genomics, vol. 89, no. 4, pp. 451–459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Vita and M. Henriksson, “The Myc oncoprotein as a therapeutic target for human cancer,” Seminars in Cancer Biology, vol. 16, no. 4, pp. 318–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. A. V. Bakin and T. Curran, “Role of DNA 5-methylcytosine transferase in cell transformation by fos,” Science, vol. 283, no. 5400, pp. 387–390, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. I. Fialka, H. Schwarz, E. Reichmann, M. Oft, M. Busslinger, and H. Beug, “The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions,” Journal of Cell Biology, vol. 132, no. 6, pp. 1115–1132, 1996. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Hu, E. Mueller, S. Oliviero, V. P. Papaioannou, R. Johnson, and B. M. Spiegelman, “Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes,” The EMBO Journal, vol. 13, no. 13, pp. 3094–3103, 1994. View at Scopus
  88. M. Mikula, J. Gotzmann, A. N. M. Fischer et al., “The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis,” Oncogene, vol. 22, no. 42, pp. 6725–6738, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. S. P. Jin, J. H. Kim, M. A. Kim et al., “Prognostic significance of loss of c-fos protein in gastric carcinoma,” Pathology and Oncology Research, vol. 13, no. 4, pp. 284–289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Zhou, J.-S. Zhang, J.-C. Yu et al., “Negative association of c-fos expression as a favorable prognostic indicator in gastric cancer,” Archives of Medical Research, vol. 41, no. 3, pp. 201–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. N. N. Mazurenko, E. A. Kogan, N. M. Sukhova, and I. B. Zborovskaia, “Synthesis and distribution of oncoproteins in tumor tissue,” Voprosy Meditsinskoj Khimii, vol. 37, no. 6, pp. 53–59, 1991. View at Scopus
  92. W.-J. Song, M. G. Sullivan, R. D. Legare et al., “Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia,” Nature Genetics, vol. 23, no. 2, pp. 166–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Usui, K. Aoyagi, N. Saeki et al., “Expression status of RUNX1/AML1 in normal gastric epithelium and its mutational analysis in microdissected gastric cancer cells,” International Journal of Oncology, vol. 29, no. 4, pp. 779–784, 2006. View at Scopus
  94. C. Sakakura, A. Hagiwara, K. Miyagawa et al., “Frequent downregulation of the runt domain transcription factors RUNX1, RUNX3 and their cofactor CBFB in gastric cancer,” International Journal of Cancer, vol. 113, no. 2, pp. 221–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Xue, P. Ni, B. Lin, H. Xu, and G. Huang, “X-ray repair cross-complementing group 1 (XRCC1) genetic polymorphisms and gastric cancer risk: a HuGe review and meta-analysis,” The American Journal of Epidemiology, vol. 173, no. 4, pp. 363–375, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Jiang, Z. Jia, D. Cao et al., “Polymorphisms of the DNA methyltransferase 1 associated with reduced risks of Helicobacter pylori infection and increased risks of gastric atrophy,” PLoS ONE, vol. 7, no. 9, Article ID e46058, 2012. View at Publisher · View at Google Scholar
  97. W.-L. Cheng, C.-S. Wang, Y.-H. Huang, M.-M. Tsai, Y. Liang, and K.-H. Lin, “Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer,” Annals of Oncology, vol. 22, no. 10, pp. 2267–2276, 2011. View at Publisher · View at Google Scholar · View at Scopus