About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 374828, 7 pages
http://dx.doi.org/10.1155/2014/374828
Research Article

Surface-Based Regional Homogeneity in First-Episode, Drug-Naïve Major Depression: A Resting-State fMRI Study

1Laboratory for Functional Connectome and Development, Magnetic Resonance Imaging Research Center, Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing 100101, China
2Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, China
3University of Chinese Academy of Sciences, Beijing 100049, China

Received 5 November 2013; Revised 15 January 2014; Accepted 19 January 2014; Published 25 February 2014

Academic Editor: Qiyong Gong

Copyright © 2014 Hui-Jie Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Press, Washington, DC, USA, 4th edition, 2000.
  2. G. J. Siegle, S. R. Steinhauer, M. E. Thase, V. A. Stenger, and C. S. Carter, “Can't shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals,” Biological Psychiatry, vol. 51, no. 9, pp. 693–707, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magnetic Resonance in Medicine, vol. 34, no. 4, pp. 537–541, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” NeuroImage, vol. 22, no. 1, pp. 394–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Liu, K. Wang, C. YU et al., “Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: a review of resting-state fMRI studies,” Neuropsychologia, vol. 46, no. 6, pp. 1648–1656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. K. Shukla, B. Keehn, and R. A. Müller, “Regional homogeneity of fMRI time series in autism spectrum disorders,” Neuroscience Letters, vol. 476, no. 1, pp. 46–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Yao, L. Wang, Q. Lu, H. Liu, and G. Teng, “Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study,” Journal of Affective Disorders, vol. 115, no. 3, pp. 430–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W. B. Guo, X. L. Sun, L. Liu et al., “Disrupted regional homogeneity in treatment-resistant depression: a resting-state fMRI study,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 5, pp. 1297–1302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Z. Wu, D. M. Li, W. H. Kuang et al., “Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI,” Human Brain Mapping, vol. 32, no. 8, pp. 1290–1299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Liu, C. Xu, Y. Xu et al., “Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression,” Psychiatry Research, vol. 182, no. 3, pp. 211–215, 2010. View at Scopus
  11. D. H. Peng, K. D. Jiang, Y. R. Fang et al., “Decreased regional homogeneity in major depression as revealed by resting-state functional magnetic resonance imaging,” Chinese Medical Journal, vol. 124, no. 3, pp. 369–373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. Chen, F. Liu, G. L. Xun, et al., “Early and late onset, first-episode, treatment-naive depression: same clinical symptoms, different regional neural activities,” Journal of Affective Disorders, vol. 143, no. 1–3, pp. 56–63, 2012.
  13. B. D. Argall, Z. S. Saad, and M. S. Beauchamp, “Simplified intersubject averaging on the cortical surface using SUMA,” Human Brain Mapping, vol. 27, no. 1, pp. 14–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Fischl, M. I. Sereno, R. B. Tootell, and A. M. Dale, “High-resolution intersubject averaging and a coordinate system for the cortical surface,” Human Brain Mapping, vol. 8, no. 4, pp. 272–284, 1999.
  15. B. Fischl, N. Rajendran, E. Busa et al., “Cortical folding patterns and predicting cytoarchitecture,” Cerebral Cortex, vol. 18, no. 8, pp. 1973–1980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. X. N. Zuo, T. Xu, L. Jiang, et al., “Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space,” Neuroimage, vol. 65, pp. 374–386, 2013.
  17. M. B. First, R. L. Spitzer, and M. Gibbon, Structured Clinical Interview for DSM-IV Axis 1 Disorder, Biometrics Research Department, New York State Psychiatric Institute, New York, NY, USA, 1995.
  18. X. X. Xing, Y. L. Zhou, J. S. Adelstein, and X. N. Zuo, “PDE-based spatial smoothing: a practical demonstration of impacts on MRI brain extraction, tissue segmentation and registration,” Magnetic Resonance Imaging, vol. 29, no. 5, pp. 731–738, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. X. N. Zuo and X. X. Xing, “Effects of non-local diffusion on structural MRI preprocessing and default network mapping: statistical comparisons with isotropic/anisotropic diffusion,” PLoS ONE, vol. 6, no. 10, Article ID e26703, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. G. Yan, R. C. Craddock, X. N. Zuo, Y. F. Zang, and M. P. Milham, “Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes,” Neuroimage, vol. 80, pp. 246–262, 2013.
  21. D. N. Greve and B. Fischl, “Accurate and robust brain image alignment using boundary-based registration,” NeuroImage, vol. 48, no. 1, pp. 63–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Bernal-Rusiel, M. Atienza, and J. L. Cantero, “Determining the optimal level of smoothing in cortical thickness analysis: a hierarchical approach based on sequential statistical thresholding,” NeuroImage, vol. 52, no. 1, pp. 158–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Kuhn and J. Gallinat, “Resting-state brain activity in schizophrenia and major depression: a quantitative meta-analysis,” Schizophrenia Bulletin, vol. 39, no. 2, pp. 358–365, 2013.
  24. M. M. Mesulam and E. J. Mufson, “Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain,” Journal of Comparative Neurology, vol. 212, no. 1, pp. 1–22, 1982. View at Scopus
  25. E. J. Mufson and M. M. Mesulam, “Insula of the old world monkey. II. Afferent cortical input and comments on the claustrum,” Journal of Comparative Neurology, vol. 212, no. 1, pp. 23–37, 1982. View at Scopus
  26. J. R. Augustine, “Circuitry and functional aspects of the insular lobe in primates including humans,” Brain Research Reviews, vol. 22, no. 3, pp. 229–244, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. B. T. Lee, C. Seong Whi, K. Hyung Soo et al., “The neural substrates of affective processing toward positive and negative affective pictures in patients with major depressive disorder,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 31, no. 7, pp. 1487–1492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. D. Townsend, N. K. Eberhart, S. Y. Bookheimer et al., “FMRI activation in the amygdala and the orbitofrontal cortex in unmedicated subjects with major depressive disorder,” Psychiatry Research, vol. 183, no. 3, pp. 209–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. W. Schlund, G. Verduzco, M. F. Cataldo, and R. Hoehn-Saric, “Generalized anxiety modulates frontal and limbic activation in major depression,” Behavioral and Brain Functions, vol. 8, article 8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. I. M. Veer, C. F. Beckmann, M. J. van Tol et al., “Whole brain resting-state analysis reveals decreased functional connectivity in major depression,” Frontiers in Systems Neuroscience, vol. 4, article 41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. R. Cullen, D. G. Gee, B. Klimes-Dougan et al., “A preliminary study of functional connectivity in comorbid adolescent depression,” Neuroscience Letters, vol. 460, no. 3, pp. 227–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Lui, Q. Wu, L. Qiu et al., “Resting-state functional connectivity in treatment-resistant depression,” The American Journal of Psychiatry, vol. 168, no. 6, pp. 642–648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Kober, L. F. Barrett, J. Joseph, E. Bliss-Moreau, K. Lindquist, and T. D. Wager, “Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies,” NeuroImage, vol. 42, no. 2, pp. 998–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Stuhrmann, T. Suslow, and U. Dannlowski, “Facial emotion processing in major depression: a systematic review of neuroimaging findings,” Biology of Mood & Anxiety Disorders, vol. 1, no. 1, article 10, 2011. View at Publisher · View at Google Scholar
  35. P. B. Fitzgerald, A. R. Laird, J. Maller, and Z. J. Daskalakis, “A meta-analytic study of changes in brain activation in depression,” Human Brain Mapping, vol. 29, no. 6, pp. 683–695, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Sliz and S. Hayley, “Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research,” Frontiers in Human Neuroscience, vol. 6, article 323, 2012. View at Publisher · View at Google Scholar
  37. T. Takahashi, M. Yücel, V. Lorenzetti et al., “Volumetric MRI study of the insular cortex in individuals with current and past major depression,” Journal of Affective Disorders, vol. 121, no. 3, pp. 231–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Järnum, S. F. Eskildsen, E. G. Steffensen et al., “Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder,” Acta Psychiatrica Scandinavica, vol. 124, no. 6, pp. 435–446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Fusar-Poli, S. Borgwardt, A. Crescini et al., “Neuroanatomy of vulnerability to psychosis: a voxel-based meta-analysis,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 5, pp. 1175–1185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Liu, Y. Wang, H. Liu, Z. Liu, and W. Zhou, “Diffusion tensor imaging and resting state functional magnetic resonance imaging on young patients with major depressive disorder,” Journal of Central South University, vol. 35, no. 1, pp. 25–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. M. Cannon, M. Ichise, D. Rollis et al., “Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB, comparison with bipolar disorder,” Biological Psychiatry, vol. 62, no. 8, pp. 870–877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Deschwanden, B. Karolewicz, A. M. Feyissa et al., “Reduced metabotropic glutamate receptor 5 density in major depression determined by [11C]ABP688 PET and postmortem study,” The American Journal of Psychiatry, vol. 168, no. 7, pp. 727–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Hanada, J. Imanaga, A. Yoshiiwa, et al., “The value of ethyl cysteinate dimer single photon emission computed tomography in predicting antidepressant treatment response in patients with major depression,” International Journal of Geriatric Psychiatry, vol. 28, no. 7, pp. 756–765, 2013.
  44. F. Liu, M. Hu, S. Wang, et al., “Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: a resting-state fMRI study,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 39, no. 2, pp. 326–331, 2012.
  45. R. Sprengelmeyer, J. D. Steele, B. Mwangi et al., “The insular cortex and the neuroanatomy of major depression,” Journal of Affective Disorders, vol. 133, no. 1-2, pp. 120–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. W. C. Drevets, “Functional neuroimaging studies of depression: the anatomy of melancholia,” Annual Review of Medicine, vol. 49, pp. 341–361, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. H. S. Mayberg, “Limbic-cortical dysregulation: a proposed model of depression,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 9, no. 3, pp. 471–481, 1997. View at Scopus