About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 457538, 7 pages
http://dx.doi.org/10.1155/2014/457538
Clinical Study

Action Observation Therapy in the Subacute Phase Promotes Dexterity Recovery in Right-Hemisphere Stroke Patients

1Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Via Della Pisana 235, 00163 Rome, Italy
2Department of Experimental and Clinical Medicine, Polytechnic University of Marche, 60121 Ancona, Italy

Received 16 December 2013; Revised 28 April 2014; Accepted 28 April 2014; Published 22 May 2014

Academic Editor: Stefano Paolucci

Copyright © 2014 Patrizio Sale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Sale, V. Lombardi, and M. Franceschini, “Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis,” Stroke Research and Treatment, vol. 2012, Article ID 820931, 5 pages, 2012. View at Publisher · View at Google Scholar
  2. A. C. Wallace, P. Talelli, M. Dileone, et al., “Standardizing the intensity of upper limb treatment in rehabilitation medicine,” Clinical Rehabilitation, vol. 24, no. 5, pp. 471–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Franceschini, “Clinical rehabilitation needs the translation from basic neuroscience in daily practice,” The European Journal of Physical and Rehabilitation Medicine, vol. 48, no. 1, pp. 87–89, 2012.
  4. M. Franceschini, M. Agosti, A. Cantagallo, P. Sale, M. Mancuso, and G. Buccino, “Mirror neurons: action observation treatment as a tool in stroke rehabilitation,” The European Journal of Physical and Rehabilitation Medicine, vol. 46, no. 4, pp. 517–523, 2010. View at Scopus
  5. M. Franceschini, M. G. Ceravolo, M. Agosti, et al., “Clinical relevance of action observation in upper-limb stroke rehabilitation: a possible role in recovery of functional dexterity. A randomized clinical trial,” Neurorehabilitation and Neural Repair, vol. 26, no. 5, pp. 456–462, 2012. View at Publisher · View at Google Scholar
  6. P. Sale and M. Franceschini, “Action observation and mirror neuron network: a tool for motor stroke rehabilitation,” The European Journal of Physical and Rehabilitation Medicine, vol. 48, no. 2, pp. 313–318, 2012.
  7. P. Sale, F. Bovolenta, M. Agosti, P. Clerici, and M. Franceschini, “Short-term and long-term outcomes of serial robotic training for improving upper limb function in chronic stroke,” International Journal of Rehabilitation Research, vol. 37, no. 1, pp. 67–73, 2014. View at Publisher · View at Google Scholar
  8. C. Keysers and V. Gazzola, “Social neuroscience: mirror neurons recorded in humans,” Current Biology, vol. 20, no. 8, pp. R353–R354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Buccino, A. Solodkin, and S. L. Small, “Functions of the mirror neuron system: implications for neurorehabilitation,” Cognitive and Behavioral Neurology, vol. 19, no. 1, pp. 55–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annual Review of Neuroscience, vol. 27, pp. 169–192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Fadiga, L. Fogassi, G. Pavesi, and G. Rizzolatti, “Motor facilitation during action observation: a magnetic stimulation study,” Journal of Neurophysiology, vol. 73, no. 6, pp. 2608–2611, 1995. View at Scopus
  12. G. Buccino, F. Lui, N. Canessa, et al., “Neural circuits involved in the recognition of actions performed by nonconspecifics: an fMRI study,” Journal of Cognitive Neuroscience, vol. 16, no. 1, pp. 114–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Ertelt, S. Small, A. Solodkin, et al., “Action observation has a positive impact on rehabilitation of motor deficits after stroke,” NeuroImage, vol. 36, supplement 2, pp. T164–T173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Gatti, A. Tettamanti, P. M. Gough, E. Riboldi, L. Marinoni, and G. Buccino, “Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study,” Neuroscience Letters, vol. 540, pp. 37–42, 2013. View at Publisher · View at Google Scholar
  15. A. R. Fugl-Meyer, L. Jääskö, I. Leyman, S. Olsson, and S. Steglind, “The post- stroke hemiplegic patient, 1: a method for evaluation of physical performance,” Scandinavian Journal of Rehabilitation Medicine, vol. 7, no. 1, pp. 13–31, 1975.
  16. V. Mathiowetz, G. Volland, N. Kashman, and K. Weber, “Adult norms for the Box and Block Test of manual dexterity,” The American Journal of Occupational Therapy, vol. 39, no. 6, pp. 386–391, 1985. View at Scopus
  17. T. Platz, C. Pinkowski, F. van Wijck, I. H. Kim, P. di Bella, and G. Johnson, “Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study,” Clinical Rehabilitation, vol. 19, no. 4, pp. 404–411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Shah, F. Vanclay, and B. Cooper, “Efficiency, effectiveness, and duration of stroke rehabilitation,” Stroke, vol. 21, no. 2, pp. 241–246, 1990. View at Scopus
  19. G. Buccino, F. Binkofski, G. R. Fink, et al., “Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study,” European Journal of Neuroscience, vol. 13, no. 2, pp. 400–404, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Proverbio, R. Azzari, and R. Adorni, “Is there a left hemispheric asymmetry for tool affordance processing?” Neuropsychologia, vol. 51, no. 13, pp. 2690–2701, 2013. View at Publisher · View at Google Scholar
  21. F. Hamzei, C. H. Läppchen, V. Glauche, I. Mader, M. Rijntjes, and C. Weiller, “Functional plasticity induced by mirror training: the mirror as the element connecting both hands to one hemisphere,” Neurorehabilitation and Neural Repair, vol. 26, no. 5, pp. 484–496, 2012. View at Publisher · View at Google Scholar