About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 465435, 11 pages
http://dx.doi.org/10.1155/2014/465435
Research Article

Control Efficacy of an Endophytic Bacillus amyloliquefaciens Strain BZ6-1 against Peanut Bacterial Wilt, Ralstonia solanacearum

1College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
2Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
3School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China

Received 30 April 2013; Revised 6 October 2013; Accepted 17 October 2013; Published 12 January 2014

Academic Editor: Daniele Daffonchio

Copyright © 2014 Xiaobing Wang and Guobin Liang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Yabuuchi, Y. Kosako, I. Yano, H. Hotta, and Y. Nishiuchi, “Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov,” Microbiology and Immunology, vol. 39, no. 11, pp. 897–904, 1995. View at Scopus
  2. T. P. Denny, “Plant pathogenic ralstonia species,” in Plant-Associated Bacteria, pp. 573–644, Springer, Dordrecht, the Netherlands, 2006.
  3. A. C. Hayward, “Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum,” Annual Review of Phytopathology, vol. 29, pp. 65–87, 1991. View at Scopus
  4. D. E. Partridge, T. B. Sutton, D. L. Jordan, V. L. Curtis, and J. E. Bailey, “Management of sclerotinia blight of peanut with the biological control agent Coniothyrium minitans,” Plant Disease, vol. 90, no. 7, pp. 957–963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. A. Melouk and P. A. Backman, “Management of soilborne fungal pathogens,” in Peanut Health Management, pp. 75–82, American Phytopathological Society, St. Paul, Minn, USA, 1995.
  6. S. Steinkellner and I. Langer, “Impact of tillage on the incidence of Fusarium spp. in soil,” Plant and Soil, vol. 267, no. 1-2, pp. 13–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Vargas Gil, R. Haro, C. Oddino et al., “Crop management practices in the control of peanut diseases caused by soilborne fungi,” Crop Protection, vol. 27, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Jiang, B. Liao, X. Ren et al., “Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses,” Journal of Genetics and Genomics, vol. 34, no. 6, pp. 544–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. W. J. Li and R. B. Jiang, “Screening of antagonistic strains against tomato bacterial wilt (Ralstonia solanacearum),” Journal of Microbiology, vol. 27, no. 1, pp. 5–8, 2007.
  10. B. S. Liao, “a Broad review and perspectives on breeding for resistance to bacterial wilt,” in Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex, pp. 225–238, America Phytopathological Society, 2005.
  11. A. Tronsmo, “Trichoderma harzianum in biological control of fungal diseases,” in Principles and Practices of Managing Soilborne Plant Pathogens, pp. 213–236, America Phytopathology Society, St. Paul, Minn, USA, 1996.
  12. Y. Cai, Z. Liao, J. Zhang, W. Kong, and C. He, “Effect of ecological organic fertilizer on tomato bacterial wilt and soil microbial diversities,” Chinese Journal of Applied Ecology, vol. 14, no. 3, pp. 349–353, 2003. View at Scopus
  13. S. Yoshida, S. Hiradate, T. Tsukamoto, K. Hatakeda, and A. Shirata, “Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves,” Phytopathology, vol. 91, no. 2, pp. 181–187, 2001. View at Scopus
  14. X. Q. Peng, G. S. Zhou, Z. P. Deng, C. F. Kuang, K. Luo, and H. Y. Li, “Screening, identification and control efficacy of tobacco antagonistic endophytic bacteria against Ralstonia solanacearum,” Acta Phytopathological Sinica, vol. 37, no. 6, pp. 670–674, 2007.
  15. S. L. Dwivedi, S. Gurtu, S. Chandra, W. Yuejin, and S. N. Nigam, “Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis,” Plant Breeding, vol. 120, no. 4, pp. 345–349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. B. S. Liao, X. Q. Liang, H. F. Jiang, Y. Lei, Z. H. Shan, and X. Y. Zhang, “Progress on genetic enhancement for resistance to groundnut bacterial wilt in China,” in Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex, pp. 239–246, America Phytopathological Society, 2005.
  17. E. S. Colson-Hanks and B. J. Deverall, “Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to alternaria leaf spot in cotton,” Plant Pathology, vol. 49, no. 2, pp. 171–178, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Lin, Y.-S. Qiao, Z.-Y. Ju et al., “Isolation and characterization of endophytic bacillius subtilis jaas ed1 antagonist of eggplant verticillium wilt,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 7, pp. 1489–1493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. V. Sturz, B. R. Christie, and J. Nowak, “Bacterial endophytes: potential role in developing sustainable systems of crop production,” Critical Reviews in Plant Sciences, vol. 19, no. 1, pp. 1–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. I. J. Misaghi and C. R. Donndelinger, “Endophytic bacteria in symptom-free cotton plants,” Phytopathology, vol. 80, pp. 808–811, 1990.
  21. Z. Khan, S. G. Kim, Y. H. Jeon, H. U. Khan, S. H. Son, and Y. H. Kim, “A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode,” Bioresource Technology, vol. 99, no. 8, pp. 3016–3023, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. P. Ryan, K. Germaine, A. Franks, D. J. Ryan, and D. N. Dowling, “Bacterial endophytes: recent developments and applications,” FEMS Microbiology Letters, vol. 278, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Parmar and K. R. Dadarwal, “Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria,” Journal of Applied Microbiology, vol. 86, no. 1, pp. 36–44, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Bai, F. D'Aoust, D. L. Smith, and B. T. Driscoll, “Isolation of plant-growth-promoting Bacillus strains from soybean root nodules,” Canadian Journal of Microbiology, vol. 48, no. 3, pp. 230–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Dahal, D. Heintz, A. Van Dorsselaer, H.-P. Braun, and K. Wydra, “Pathogenesis and stress related, as well as metabolic proteins are regulated in tomato stems infected with Ralstonia solanacearum,” Plant Physiology and Biochemistry, vol. 47, no. 9, pp. 838–846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Yu, W.-W. Li, M. H.-W. Lam, H.-Q. Yu, and C. Wu, “Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production,” Applied Microbiology and Biotechnology, vol. 95, no. 1, pp. 255–262, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Ganesan and S. S. Gnanamanickam, “Biological control of Sclerotium rolfsii sacc. in peanut by inoculation with Pseudomonas fluorescens,” Soil Biology and Biochemistry, vol. 19, no. 1, pp. 35–38, 1987. View at Scopus
  28. P. Shen, X. R. Fan, and G. B. Li, “Biochemical and physiological characteristics of microorganisms,” in Microbiology Experiment, pp. 90–97, Advance Education Press, Beijing, China, 1999.
  29. S.-C. Lee, S.-H. Kim, I.-H. Park, S.-Y. Chung, M. Subhosh Chandra, and Y.-L. Choi, “Isolation, purification, and characterization of novel fengycin S from bacillus amyloliquefaciens LSC04 degrading-crude oil,” Biotechnology and Bioprocess Engineering, vol. 15, no. 2, pp. 246–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. W. J. Li and R. B. Jiang, “Screening of antagonistic strains against tomato bacterial wilt (Ralstonia solanacearum),” Journal of Microbiology, vol. 27, pp. 5–8, 2007.
  31. B. X. Zhang and P. Zhang, “Detection of introduced microorganism to rhizosphere,” Journal of Zhejiang University (Agriculture and Life Science), vol. 26, no. 6, pp. 624–628, 2000.
  32. B. M. Hu and Q. D. Zhang, “The orthogonal method,” in Statistics and Analysis Methods in Agriculture Experiment, pp. 72–92, Zhejiang Science Press, Hangzhou, China, 1985.
  33. L. Sun, Z. Lu, X. Bie, F. Lu, and S. Yang, “Isolation and characterization of a co-producer of fengycins and surfactins, endophytic bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi,” World Journal of Microbiology and Biotechnology, vol. 22, no. 12, pp. 1259–1266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Bie, Z. Lu, and F. Lu, “Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID,” Journal of Microbiological Methods, vol. 79, no. 3, pp. 272–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Strobel, B. Daisy, U. Castillo, and J. Harper, “Natural products from endophytic microorganisms,” Journal of Natural Products, vol. 67, no. 2, pp. 257–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. X. J. Chen, C. S. Hu, Y. H. Tong, Z. L. Ji, and J. Y. Xu, “Inhibition of rice endophytic Bacillus subtilis on Magnaporthe gresea and Gibberella fujikuroi,” Chinese Journal of Biological Control, vol. 24, no. 4, pp. 339–344, 2008.
  37. D. Hutsebaut, J. Vandroemme, J. Heyrman et al., “Raman microspectroscopy as an identification tool within the phylogenetically homogeneous 'Bacillus subtilis'-group,” Systematic and Applied Microbiology, vol. 29, no. 8, pp. 650–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Chun and K. S. Bae, “Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences,” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, vol. 78, no. 2, pp. 123–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Zhao, X. Chen, and C. Zhao, “Study on CO2 capture using dry potassium-based sorbents through orthogonal test method,” International Journal of Greenhouse Gas Control, vol. 4, no. 4, pp. 655–658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Li, Q. Pan, X. Cui, and C. Duan, “Optimization on anthocyanins extraction from wine grape skins using orthogonal test design,” Food Science and Biotechnology, vol. 19, no. 4, pp. 1047–1053, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. E. J. M. Florence and J. K. Sharma, “Botryodiplodia theobromae associated with blue staining in commercially important timbers of kerala and its possible biological control,” Materials and Organisms, vol. 25, no. 3, pp. 193–199, 1990.
  42. Z. Jin and J. J. Morrell, “Bioprotection of bamboo against fungal mold and stain,” Material und Organismen, vol. 30, no. 1, pp. 57–62, 1996. View at Scopus
  43. R. S. Utkhede and E. M. Smith, “Promotion of apple tree growth and fruit production by the EBW-4 strain of Bacillus subtilis in apple replant disease soil,” Canadian Journal of Microbiology, vol. 38, no. 12, pp. 1270–1273, 1992. View at Scopus
  44. A. L. Chiou and W. S. Wu, “Isolation, identification and evaluation of bacterial antagonists against Botrytis elliptica on lily,” Journal of Phytopathology, vol. 149, no. 6, pp. 319–324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Koumoutsi, X.-H. Chen, A. Henne et al., “Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in bacillus amyloliquefaciens strain FZB42,” Journal of Bacteriology, vol. 186, no. 4, pp. 1084–1096, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Kowall, J. Vater, B. Kluge, T. Stein, P. Franke, and D. Ziessow, “Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105,” Journal of Colloid and Interface Science, vol. 204, no. 1, pp. 1–8, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Peypoux, J.-M. Bonmatin, H. Labbe et al., “[Ala4]Surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies,” European Journal of Biochemistry, vol. 224, no. 1, pp. 89–96, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Vanittanakom, W. Loeffler, U. Koch, and G. Jung, “Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3,” Journal of Antibiotics, vol. 39, no. 7, pp. 888–901, 1986. View at Scopus
  49. J. Wang, J. Liu, X. Wang, J. Yao, and Z. Yu, “Application of electrospray ionization masss spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis,” Letters in Applied Microbiology, vol. 39, no. 1, pp. 98–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Nishikiori, H. Naganawa, and Y. Muraoka, “Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67 II. Structure of fatty acid residue and amino acid sequence,” Journal of Antibiotics, vol. 39, no. 6, pp. 745–745, 1986. View at Scopus