About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 480921, 7 pages
http://dx.doi.org/10.1155/2014/480921
Research Article

Antisecretory Effect of Hydrogen Sulfide on Gastric Acid Secretion and the Involvement of Nitric Oxide

1Research Institute for Infectious Diseases of Digestive System, Physiology Research Center (PRC) and Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357 15794, Iran
2Department of Physiology, The School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3Research Institute for Infectious Diseases of Digestive System, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357 15794, Iran
4Research Institute for Infectious Diseases of Digestive System and Department of Virology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357 15794, Iran

Received 20 April 2013; Revised 24 December 2013; Accepted 8 January 2014; Published 24 February 2014

Academic Editor: David Bernardo Ordiz

Copyright © 2014 Seyyed Ali Mard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The present study was designed to investigate the effect of H2S on distention-induced gastric acid secretion. Fifty-two rats were randomly assigned to seven experimental groups. The gastric acid secretion was stimulated by gastric distention. Two groups of rats received L-cysteine or saline for 5 days before stimulation of the gastric acid secretion. Two groups of animals also received NaHS or saline just prior to stimulation of the gastric acid secretion. The effect of L-NAME and propargylglycine was also investigated. The mucosal levels of the gene expression of cyclooxygenase-2 (COX-2), endothelial nitric oxide synthase (eNOS), and H+/K+-ATPase α-subunit were quantified by qPCR and luminal concentrations of NO were determined. NaHS and L-cysteine decreased the gastric acid output in response to distention. The mRNA expression of H+/K+-ATPase α-subunit decreased by NaHS and L-cysteine as compared with the control group while gene expression of eNOS and COX-2 was upregulated. The inhibitory effect of NaHS on distention-induced gastric acid secretion was mitigated by pretreatment of L-NAME. These findings suggest the involvement of NO in mediating the antisecretory effect of H2S.