About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 508216, 9 pages
http://dx.doi.org/10.1155/2014/508216
Research Article

Expression of Mesenchymal Stem Cells-Related Genes and Plasticity of Aspirated Follicular Cells Obtained from Infertile Women

1Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Šlajmerjeva 3, 1000 Ljubljana, Slovenia
2Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia

Received 23 November 2013; Revised 21 January 2014; Accepted 22 January 2014; Published 3 March 2014

Academic Editor: Jeroen Krijgsveld

Copyright © 2014 Edo Dzafic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hamel, I. Dufort, C. Robert et al., “Identification of differentially expressed markers in human follicular cells associated with competent oocytes,” Human Reproduction, vol. 23, no. 5, pp. 1118–1127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G. F. Erickson, “Follicle growth and development,” in Gynecology and Obstetrics CD-ROM, J. J. Sciarra, Ed., chapter 12, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2004.
  3. M. W. Beckmann, D. Polacek, L. Seung, and J. R. Schreiber, “Human ovarian granulosa cell culture: determination of blood cell contamination and evaluation of possible culture purification steps,” Fertility and Sterility, vol. 56, no. 5, pp. 881–887, 1991. View at Scopus
  4. J. A. Loukides, R. A. Loy, R. Edwards, J. Honig, I. Visintin, and M. L. Polan, “Human follicular fluids contain tissue macrophages,” Journal of Clinical Endocrinology and Metabolism, vol. 71, no. 5, pp. 1363–1367, 1990. View at Scopus
  5. K. Kossowska-Tomaszczuk and C. De Geyter, “Cells with stem cell characteristics in somatic compartments of the ovary,” BioMed Research International, vol. 2013, Article ID 310859, 8 pages, 2013. View at Publisher · View at Google Scholar
  6. E. Dzafic, M. Stimpfel, and I. Virant-Klun, “Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential,” Journal of Assisted Reproduction and Genetics, vol. 30, no. 10, pp. 1255–1261, 2013.
  7. A. Gougeon, “Dynamics of follicular growth in the human: a model from preliminary results,” Human Reproduction, vol. 1, no. 2, pp. 81–87, 1986. View at Scopus
  8. K. Kossowska-Tomaszczuk, C. De Geyter, M. De Geyter et al., “The multipotency of luteinizing granulosa cells collected from mature ovarian follicles,” Stem Cells, vol. 27, no. 1, pp. 210–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Oki, H. Ono, T. Motohashi, N. Sugiura, H. Nobusue, and K. Kano, “Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts,” Biochemical Journal, vol. 447, no. 2, pp. 239–248, 2012.
  10. J. L. Pitman, A. S. McNeilly, J. R. McNeilly et al., “The fate of granulosa cells following premature oocyte loss and the development of ovarian cancers,” The International Journal of Developmental Biology, vol. 56, no. 10–12, pp. 949–958, 2012.
  11. A. Honda, M. Hirose, K. Hara et al., “Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12389–12394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Takehara, A. Yabuuchi, K. Ezoe et al., “The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function,” Laboratory Investigation, vol. 93, no. 2, pp. 181–193, 2013.
  13. X. Fu, Y. He, C. Xie, and W. Liu, “Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage,” Cytotherapy, vol. 10, no. 4, pp. 353–363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Knez, T. Tomazevic, B. Zorn, E. Vrtacnik-Bokal, and I. Virant-Klun, “Intracytoplasmic morphologically selected sperm injection improves development and quality of preimplantation embryos in teratozoospermia patients,” Reproductive Biomedicine Online, vol. 25, no. 2, pp. 168–179, 2012.
  15. D. K. Lobb and E. V. Younglai, “A simplified method for preparing IVF granulosa cells for culture,” Journal of Assisted Reproduction and Genetics, vol. 23, no. 2, pp. 93–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Stimpfel, T. Skutella, M. Kubista, E. Malicev, S. Conrad, and I. Virant-Klun, “Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 291038, 15 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: Implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Chandra, S. Phadnis, P. D. Nair, and R. R. Bhonde, “Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells,” Stem Cells, vol. 27, no. 8, pp. 1941–1953, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Ferrero, F. Delgado-Rosas, C. M. Garcia-Pascual et al., “Efficiency and purity provided by the existing methods for the isolation of luteinized granulosa cells: a comparative study,” Human Reproduction, vol. 27, no. 6, pp. 1781–1789, 2012.
  20. A. Bukovsky, “Ovarian stem cell niche and follicular renewal in mammals,” Anatomical Record, vol. 294, no. 8, pp. 1284–1306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. C. Boquest, A. Shahdadfar, K. Frønsdal et al., “Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture,” Molecular Biology of the Cell, vol. 16, no. 3, pp. 1131–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Qiu, M. Seager, A. Osman et al., “Ovarian VEGF165b expression regulates follicular development, corpus luteum function and fertility,” Reproduction, vol. 143, no. 4, pp. 501–511, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Yoshioka, H. Fujiwara, T. Higuchi, S. Yamada, M. Maeda, and S. Fujii, “Melanoma cell adhesion molecule (MCAM/CD146) is expressed on human luteinizing granulosa cells: enhancement of its expression by hCG, interleukin-1 and tumour necrosis factor-α,” Molecular Human Reproduction, vol. 9, no. 5-6, pp. 311–319, 2003. View at Scopus
  24. T. Honda, H. Fujiwara, M. Ueda, M. Maeda, and T. Mori, “Integrin α6 is a differentiation antigen of human granulosa cells,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 10, pp. 2899–2905, 1995. View at Scopus
  25. H. Fujiwara, M. Maeda, T. Honda et al., “Granulosa cells express integrin α6: possible involvement of integrin α6 in folliculogenesis,” Hormone Research, vol. 46, no. 1, pp. 24–30, 1996. View at Scopus
  26. M. P. Kowalewski, M. T. Dyson, P. R. Manna, and D. M. Stocco, “Involvement of peroxisome proliferator-activated receptor in gonadal steroidogenesis and steroidogenic acute regulatory protein expression,” Reproduction, Fertility and Development, vol. 21, no. 7, pp. 909–922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Canipari, V. Cellini, and S. Cecconi, “The ovary feels fine when paracrine and autocrine networks cooperate with gonadotropins in the regulation of folliculogenesis,” Current Pharmaceutical Design, vol. 18, no. 3, pp. 245–255, 2012.
  28. Y. Zhang and M. L. Dufau, “Silencing of transcription of the human luteinizing hormone receptor gene by histone deacetylase-mSin3A complex,” Journal of Biological Chemistry, vol. 277, no. 36, pp. 33431–33438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. S. M. Sharma, S. Sif, M. C. Ostrowski, and U. Sankar, “Defective co-activator recruitment in osteoclasts from microphthalmia-oak ridge mutant mice,” Journal of Cellular Physiology, vol. 220, no. 1, pp. 230–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. T. Franceschi and G. Xiao, “Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways,” Journal of Cellular Biochemistry, vol. 88, no. 3, pp. 446–454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Y. Wang, S. F. Yang, Z. Wang, et al., “PCAF acetylates Runx2 and promotes osteoblast differentiation,” Journal of Bone and Mineral Metabolism, vol. 31, no. 4, pp. 381–389, 2013.
  32. M. Varras, T. Griva, V. Kalles, C. Akrivis, and N. Paparisteidis, “Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART?” Journal of Ovarian Research, vol. 5, no. 1, article 36, 2012.
  33. H. Patel, D. Bhartiya, S. Parte, P. Gunjal, S. Vedulkar, and M. Bhatt, “Follicle stimulating hormone modulates ovarian stem cells through alternetly spliced receptor variant FSH-R3,” Journal of Ovarian Research, vol. 6, no. 1, article 52, 2013.
  34. X. Wang and J. Dai, “Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology,” Stem Cells, vol. 28, no. 5, pp. 885–893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Hirai, P. Karian, and N. Kikyo, “Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor,” Biochemical Journal, vol. 438, no. 1, pp. 11–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Mattioli, A. Gloria, M. Turriani et al., “Osteo-regenerative potential of ovarian granulosa cells: an in vitro and in vivo study,” Theriogenology, vol. 77, no. 7, pp. 1425–1437, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Komori, “Regulation of osteoblast differentiation by runx2,” Advances in Experimental Medicine and Biology, vol. 658, pp. 43–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. S. Park, J. Park, R. T. Franceschi, and M. Jo, “The role for runt related transcription factor 2 (RUNX2) as a transcriptional repressor in luteinizing granulosa cells,” Molecular and Cellular Endocrinology, vol. 362, no. 1-2, pp. 165–175, 2012.
  39. C. D. Hoemann, H. El-Gabalawy, and M. D. McKee, “In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization,” Pathologie Biologie, vol. 57, no. 4, pp. 318–323, 2009. View at Publisher · View at Google Scholar · View at Scopus