About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 548960, 7 pages
http://dx.doi.org/10.1155/2014/548960
Research Article

Detection of Carbapenemase-Producing Enterobacteriaceae in the Baltic Countries and St. Petersburg Area

1Department of Microbiology, University of Tartu, Ravila 19, 50411 Tartu, Estonia
2East-Tallinn Central Hospital, Ravi 18, 10138 Tallinn, Estonia
3Rīga Stradiņš University, 16 Dzirciema Street, Rīga, LV-1007, Latvia
4Smittskyddsinstitutet, Folkhälsomyndigheten, 171 82 Solna, Sweden
5Institut Pasteur in Saint Petersburg, Ul Mira 14, Saint Petersburg 197101, Russia
6St. Petersburg Hospital No. 31, Pr. Dinamo 3, Saint Petersburg 197110, Russia
7St. Petersburg Hospital No. 40, Ul Borisova 9, Sestroretsk, Saint Petersburg 197706, Russia
8Vilnius City Clinical Hospital, Antakalnio Street 57, LT-10007 Vilnius, Lithuania
9Quattromed HTI Laboratories, Väike-Paala 1, 11415 Tallinn, Estonia

Received 4 December 2013; Revised 18 January 2014; Accepted 21 January 2014; Published 4 March 2014

Academic Editor: Karmen Torkar

Copyright © 2014 Anastasia Pavelkovich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Multidrug antibiotic resistance increasing in Europe,” ECDC, 2012, http://www.ecdc.europa.eu/en/press/news/_layouts/forms/News_DispForm.aspx?ID=563&List=8db7286c-fe2d-476c-9133-18ff4cb1b568.
  2. A. Marra, “NDM-1: a local clone emerges with worldwide aspirations,” Future Microbiology, vol. 6, no. 2, pp. 137–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. EARS-Net Annual Report, 2011, http://www.ecdc.europa.eu/en/publications/publications/antimicrobial-resistance-surveillance-europe-2011.pdf.
  4. C. Glasner, B. Albiger, G. Buist et al., “Carbapenemase-producing enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013,” Eurosurveillance, vol. 18, no. 28, article 3, 2013.
  5. P. Nordmann, M. Gniadkowski, C. G. Giske et al., “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clinical Microbiology and Infection, vol. 18, no. 5, pp. 432–438, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Hrabák, V. Študentová, R. Walková et al., “Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by MALDI-TOF mass spectrometry,” Journal of Clinical Microbiology, vol. 50, no. 7, pp. 2441–2443, 2012. View at Publisher · View at Google Scholar
  7. L. Wang, C. Han, W. Sui, M. Wang, and X. Lu, “MALDI-TOF MS applied to indirect carbapenemase detection: a validated procedure to clearly distinguish between carbapenemase-positive and carbapenemase-negative bacterial strains,” Analytical and Bioanalytical Chemistry, vol. 405, no. 15, pp. 5259–5266, 2013. View at Publisher · View at Google Scholar
  8. I. Burckhardt and S. Zimmermann, “Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours,” Journal of Clinical Microbiology, vol. 49, no. 9, pp. 3321–3324, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Sparbier, S. Schubert, U. Weller, C. Boogen, and M. Kostrzewa, “Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics,” Journal of Clinical Microbiology, vol. 50, no. 3, pp. 927–937, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Sparbier, K. Lange, J. Jung, S. Schubert, and M. Kostrzewa, “An automated evaluation algorithm for then MALDI-TOF MS based functional β-lactamase assay,” ASMS, A101, 2013, http://www.bruker.com/ru/products/mass-spectrometry-and-separations/literature/literature-room.html?eID=dam_frontend_push&stream=1&docID=55242.
  11. R. E. Mendes, K. A. Kiyota, J. Monteiro et al., “Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis,” Journal of Clinical Microbiology, vol. 45, no. 2, pp. 544–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Poirel, C. Héritier, V. Tolün, and P. Nordmann, “Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 1, pp. 15–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Ø. Samuelsen, C. M. Thilesen, L. Heggelund, A. N. Vada, A. Kümmel, and A. Sundsfjord, “Identification of NDM-1-producing Enterobacteriaceae in Norway,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 3, pp. 670–672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Chen, K. D. Chavda, J. R. Mediavilla et al., “Multiplex real-time PCR for detection of an epidemic KPC-producing Klebsiella pneumoniae ST258 clone,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 6, pp. 3444–3447, 2012. View at Publisher · View at Google Scholar
  15. C. I. Birkett, H. A. Ludlam, N. Woodford et al., “Real-time TaqMan PCR for rapid detection and typing of genes encoding CTX-M extended-spectrum β-lactamases,” Journal of Medical Microbiology, vol. 56, part 1, pp. 52–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Barraud, M. C. Baclet, F. Denis, and M. C. Ploy, “Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 8, Article ID dkq167, pp. 1642–1645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Nordmann, T. Naas, and L. Poirel, “Global spread of carbapenemase producing Enterobacteriaceae,” Emerging Infectious Diseases, vol. 17, no. 10, pp. 1791–1798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kostrzewa and D. Orth, “Bruker Daltonik GmbH: MALDI TOF based microbial identification for the 21st century… and beyond,” in Proceedings of the 23rd European Congress of Clinical Microbiology and Infectious Diseases, April 2013.
  19. R. Farzana, S. Shamsuzzaman, and K. Z. Mamun, “Isolation and molecular characterization of New Delhi metallo-β-lactamase-1 producing superbug in Bangladesh,” Journal of Infection in Developing Countries, vol. 7, no. 3, pp. 161–168, 2013.
  20. D. Yong, M. A. Toleman, C. G. Giske et al., “Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 12, pp. 5046–5054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Derakhshan, S. N. Peerayeh, F. Fallah, B. Bakhshi, M. Rahbar, and A. Ashrafi, “Detection of class 1, 2, and 3 integrons among Klebsiella pneumoniae isolated from children in Tehran hospitals,” Pediatric Infectious Diseases, vol. 1, no. 4, pp. 164–168, 2013. View at Publisher · View at Google Scholar