About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 561571, 14 pages
http://dx.doi.org/10.1155/2014/561571
Review Article

Extracellular Vesicles in Prostate Cancer: New Future Clinical Strategies?

Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio-Coppito 2, I-67100 L’Aquila, Italy

Received 2 December 2013; Accepted 9 January 2014; Published 23 February 2014

Academic Editor: Giovanni Luca Gravina

Copyright © 2014 Ilaria Giusti and Vincenza Dolo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Huggins, W. W. Scott, and J. H. Heinen, “Chemical composition of human semen and of the secretions of the prostate and seminal vehicles,” American Journal of Physiology, vol. 136, no. 3, pp. 467–473, 1942.
  2. R. Schrecengost and K. E. Knudsen, “Molecular pathogenesis and progression of prostate cancer,” Seminars in Oncology, vol. 40, no. 3, pp. 244–258, 2013.
  3. W. G. Nelson, A. M. De Marzo, and W. B. Isaacs, “Prostate cancer,” The New England Journal of Medicine, vol. 349, no. 4, pp. 366–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Konishi, K. Shimada, E. Ishida, and M. Nakamura, “Molecular pathology of prostate cancer,” Pathology International, vol. 55, no. 9, pp. 531–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Bhavsar, P. McCue, and R. Birbe, “Molecular diagnosis of prostate cancer: are we up to age?” Seminars in Oncology, vol. 40, no. 3, pp. 259–275, 2013.
  6. V. Coppola, R. De Maria, and D. Bonci, “MicroRNAs and prostate cancer,” Endocrine-Related Cancer, vol. 17, no. 1, pp. F1–F17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Jerónimo, P. J. Bastian, A. Bjartell et al., “Epigenetics in prostate cancer: biologic and clinical relevance,” European Urology, vol. 60, no. 4, pp. 753–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. W. Hsing and A. P. Chokkalingam, “Prostate cancer epidemiology,” Frontiers in Bioscience, vol. 11, no. 2, pp. 1388–1413, 2006. View at Scopus
  9. L. G. Gomella, J. Johannes, and E. J. Trabulsi, “Current prostate cancer treatments: effect on quality of life,” Urology, vol. 73, no. 5, pp. S28–S35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. W. Hsing and S. S. Devesa, “Trends and patterns of prostate cancer: what do they suggest?” Epidemiologic Reviews, vol. 23, no. 1, pp. 3–13, 2001. View at Scopus
  11. E. D. Crawford, “Epidemiology of prostate cancer,” Urology, vol. 62, no. 6, pp. 3–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Hemminki, R. Rawal, and J. L. Bermejo, “Prostate cancer screening, changing age-specific incidence trends and implications on familial risk,” International Journal of Cancer, vol. 113, no. 2, pp. 312–315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Wolk, “Diet, lifestyle and risk of prostate cancer,” Acta Oncologica, vol. 44, no. 3, pp. 277–281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Potosky, B. A. Miller, P. C. Albertsen, and B. S. Kramer, “The role of increasing detection in the rising incidence of prostate cancer,” Journal of the American Medical Association, vol. 273, no. 7, pp. 548–552, 1995. View at Scopus
  15. K. McDavid, J. Lee, J. P. Fulton, J. Tonita, and T. D. Thompson, “Prostate cancer incidence and mortality rates and trends in the United States and Canada,” Public Health Reports, vol. 119, no. 2, pp. 174–186, 2004. View at Scopus
  16. A. Jemal, E. Ward, X. Wu, H. J. Martin, C. C. McLaughlin, and M. J. Thun, “Geographic patterns of prostate cancer mortality and variations in access to medical care in the United States,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 3, pp. 590–595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Loeb and W. J. Catalona, “What to do with an abnormal PSA test,” Oncologist, vol. 13, no. 3, pp. 299–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. J. Pienta, “Critical appraisal of prostate-specific antigen in prostate cancer screening: 20 years later,” Urology, vol. 73, no. 5, pp. S11–S20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Khan, A. W. Partin, H. G. Rittenhouse et al., “Evaluation of proprostate specific antigen for early detection of prostate cancer in men with a total prostate specific antigen range of 4.0 To 10.0 ng/ml,” Journal of Urology, vol. 170, no. 3, pp. 723–726, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. W. J. Catalona, G. Bartsch, H. G. Rittenhouse et al., “Serum pro-prostate specific antigen preferentially detects aggressive prostate cancers in men with 2 to 4 ng/ml prostate specific antigen,” Journal of Urology, vol. 171, no. 6, part 1, pp. 2239–2244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Brimo, R. Montironi, L. Egevad et al., “Contemporary grading for prostate cancer: implications for patient care,” European Urology, vol. 63, no. 5, pp. 892–901, 2013.
  22. D. Duijvesz, T. Luider, C. H. Bangma, and G. Jenster, “Exosomes as biomarker treasure chests for prostate cancer,” European Urology, vol. 59, no. 5, pp. 823–831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Lu, J. Zhang, R. Allison et al., “Identification of extracellular δ-catenin accumulation for prostate cancer detection,” Prostate, vol. 69, no. 4, pp. 411–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Bouchardy, G. Fioretta, E. Rapiti et al., “Recent trends in prostate cancer mortality show a continuous decrease in several countries,” International Journal of Cancer, vol. 123, no. 2, pp. 421–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Rak, “Microparticles in cancer,” Seminars in Thrombosis and Hemostasis, vol. 36, no. 8, pp. 888–906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Mathivanan, H. Ji, and R. J. Simpson, “Exosomes: extracellular organelles important in intercellular communication,” Journal of Proteomics, vol. 73, no. 10, pp. 1907–1920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B. György, K. Módos, É. Pállinger et al., “Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters,” Blood, vol. 117, no. 4, pp. e39–e48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Giusti, S. D'Ascenzo, and V. Dolo, “Microvesicles as potential ovarian cancer biomarkers,” Biomed Research International, vol. 2013, Article ID 703048, 12 pages, 2013. View at Publisher · View at Google Scholar
  29. J. A. Schifferli, “Microvesicles are messengers,” Seminars in Immunopathology, vol. 33, no. 5, pp. 393–394, 2011. View at Scopus
  30. A. K. Enjeti, L. F. Lincz, and M. Seldon, “Microparticles in health and disease,” Seminars in Thrombosis and Hemostasis, vol. 34, no. 7, pp. 683–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Théry, M. Ostrowski, and E. Segura, “Membrane vesicles as conveyors of immune responses,” Nature Reviews Immunology, vol. 9, no. 8, pp. 581–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. N. P. Hessvik, K. Sandvig, and A. Llorente, “Exosomal miRNAs as biomarkers for prostate cancer,” Frontiers in Genetics, vol. 4, p. 36, 2013.
  33. G. Rabinowits, C. Gerçel-Taylor, J. M. Day, D. D. Taylor, and G. H. Kloecker, “Exosomal microRNA: a diagnostic marker for lung cancer,” Clinical Lung Cancer, vol. 10, no. 1, pp. 42–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Tavoosidana, G. Ronquist, S. Darmanis et al., “Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 21, pp. 8809–8814, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Al-Nedawi, B. Meehan, J. Micallef et al., “Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells,” Nature Cell Biology, vol. 10, no. 5, pp. 619–624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. V. Vlassov, S. Magdaleno, R. Setterquist, and R. Conrad, “Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeuticpotentials,” Biochimica and Biophysica Acta, vol. 1820, no. 7, pp. 940–948, 2012.
  38. A. Tan, J. Rajadas, and A. M. Seifalian, “Exosomes as a nannotheranostic delivery platforms for gene therapy,” Advanced Drug Delivery Reviews, vol. 65, no. 3, pp. 357–367, 2013.
  39. A. J. Abusamra, Z. Zhong, X. Zheng et al., “Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis,” Blood Cells, Molecules, and Diseases, vol. 35, no. 2, pp. 169–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Mincheva-Nilsson and V. Baranov, “The role of placental exosomes in reproduction,” American Journal of Reproductive Immunology, vol. 63, no. 6, pp. 520–533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Potolicchio, G. J. Carven, X. Xu et al., “Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism,” Journal of Immunology, vol. 175, no. 4, pp. 2237–2243, 2005. View at Scopus
  42. E.-M. Krämer-Albers, N. Bretz, S. Tenzer et al., “Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons?” Proteomics. Clinical Applications, vol. 1, no. 11, pp. 1446–1461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. R. B. Koumangoye, A. M. Sakwe, J. S. Goodwin, T. Patel, and J. Ochieng, “Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading,” PLoS ONE, vol. 6, no. 9, Article ID e24234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Nazarenko, S. Rana, A. Baumann et al., “Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation,” Cancer Research, vol. 70, no. 4, pp. 1668–1678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Kogure, W.-L. Lin, I. K. Yan, C. Braconi, and T. Patel, “Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth,” Hepatology, vol. 54, no. 4, pp. 1237–1248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. A. Cho, H. Park, E. H. Lim, and K. W. Lee, “Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells,” International Journal of Oncology, vol. 40, no. 1, pp. 130–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Safaei, B. J. Larson, T. C. Cheng et al., “Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells,” Molecular Cancer Therapeutics, vol. 4, no. 10, pp. 1595–1604, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. C. D'Souza-Schorey and J. W. Clancy, “Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers,” Genes & Development, vol. 26, no. 12, pp. 1287–1299, 2012.
  49. J. Skog, T. Würdinger, S. van Rijn et al., “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers,” Nature Cell Biology, vol. 10, no. 12, pp. 1470–1476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. F. Mause and C. Weber, “Microparticles: protagonists of a novel communication network for intercellular information exchange,” Circulation Research, vol. 107, no. 9, pp. 1047–1057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Taraboletti, S. D'Ascenzo, P. Borsotti, R. Giavazzi, A. Pavan, and V. Dolo, “Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells,” American Journal of Pathology, vol. 160, no. 2, pp. 673–680, 2002. View at Scopus
  52. V. Dolo, S. D'Ascenzo, I. Giusti, D. Millimaggi, G. Taraboletti, and A. Pavan, “Shedding of membrane vesicles by tumor and endothelial cells,” Italian Journal of Anatomy and Embryology, vol. 110, no. 2, pp. 127–133, 2005. View at Scopus
  53. I. Giusti, S. D'Ascenzo, D. Millimaggi et al., “Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles,” Neoplasia, vol. 10, no. 5, pp. 481–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. A. DeClerck and W. E. Laug, “Cooperation between matrix metalloproteinases and the plasminogen activator-plasmin system in tumor progression,” Enzyme and Protein, vol. 49, no. 1–3, pp. 72–84, 1996. View at Scopus
  55. A. Ginestra, M. D. La Placa, F. Saladino, D. Cassarà, H. Nagase, and M. L. Vittorelli, “The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness,” Anticancer Research, vol. 18, no. 5A, pp. 3433–3437, 1998. View at Scopus
  56. J. M. Inal, E. A. Ansa-Addo, D. Stratton et al., “Microvesicles in health and disease,” Archivum Immunologiae et Therapiae Experimentalis, vol. 60, no. 2, pp. 107–121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. L. E. Graves, E. V. Ariztia, J. R. Navari, H. J. Matzel, M. S. Stack, and D. A. Fishman, “Proinvasive properties of ovarian cancer ascites-derived membrane vesicles,” Cancer Research, vol. 64, no. 19, pp. 7045–7049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. F. F. van Doormaal, A. Kleinjan, M. Di Nisio, H. R. Büller, and R. Nieuwland, “Cell-derived microvesicles and cancer,” Netherlands Journal of Medicine, vol. 67, no. 7, pp. 266–273, 2009. View at Scopus
  59. M. A. Antonyak, B. Li, L. K. Boroughs et al., “Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 4852–4857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Shedden, X. T. Xie, P. Chandaroy, Y. T. Chang, and G. R. Rosania, “Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles,” Cancer Research, vol. 63, no. 15, pp. 4331–4337, 2003. View at Scopus
  61. J. W. Kim, E. Wieckowski, D. D. Taylor, T. E. Reichert, S. Watkins, and T. L. Whiteside, “Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes,” Clinical Cancer Research, vol. 11, no. 3, pp. 1010–1020, 2005. View at Scopus
  62. R. Valenti, V. Huber, M. Iero, P. Filipazzi, G. Parmiani, and L. Rivoltini, “Tumor-released microvesicles as vehicles of immunosuppression,” Cancer Research, vol. 67, no. 7, pp. 2912–2915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. M. B. Whitlow and L. M. Klein, “Response of SCC-12F, a human squamous cell carcinoma cell line, to complement attack,” Journal of Investigative Dermatology, vol. 109, no. 1, pp. 39–45, 1997. View at Scopus
  64. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Al-Nedawi, B. Meehan, R. S. Kerbel, A. C. Allison, and A. Rak, “Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3794–3799, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Dolo, A. Ginestra, G. Ghersi, H. Nagase, and M. L. Vittorelli, “Human breast carcinoma cells cultured in the presence of serum shed membrane vesicles rich in gelatinolytic activities,” Journal of Submicroscopic Cytology and Pathology, vol. 26, no. 2, pp. 173–180, 1994. View at Scopus
  67. A. Angelucci, S. D'Ascenzo, C. Festuccia et al., “Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines,” Clinical and Experimental Metastasis, vol. 18, no. 2, pp. 163–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. T. H. Lee, E. D'Asti, N. Magnus, K. Al-Nedawi, B. Meehan, and J. Rak, “Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular ‘debris’,” Seminars in Immunopathology, vol. 33, no. 5, pp. 455–467, 2011. View at Scopus
  69. G. Taraboletti, S. D'Ascenzo, I. Giusti et al., “Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH 1,” Neoplasia, vol. 8, no. 2, pp. 96–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Millimaggi, M. Mari, S. D'Ascenzo et al., “Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells,” Neoplasia, vol. 9, no. 4, pp. 349–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. G. K. Ronquist, A. Larsson, A. Stavreus-Evers, and G. Ronquist, “Prostasomes are heterogeneous regarding size and appearance but affiliated to one DNA-containing exosome family,” Prostate, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Arienti, E. Carlini, A. Polci, E. V. Cosmi, and C. A. Palmerini, “Fatty acid pattern of human prostasome lipid,” Archives of Biochemistry and Biophysics, vol. 358, no. 2, pp. 391–395, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Arvidson, G. Ronquist, G. Wikander, and A.-C. Ojteg, “Human prostasome membranes exhibit very high cholesterol/phospholipid ratios yielding high molecular ordering,” Biochimica et Biophysica Acta, vol. 984, no. 2, pp. 167–173, 1989. View at Scopus
  74. M. Stridsberg, R. Fabiani, A. Lukinius, and G. Ronquist, “Prostasomes are neuroendocrine-like vesicles in human semen,” Prostate, vol. 29, no. 5, pp. 287–295, 1996.
  75. I. Olsson and G. Ronquist, “Nucleic acid association to human prostasomes,” Archives of Andrology, vol. 24, no. 1, pp. 1–10, 1990. View at Scopus
  76. A. G. Utleg, E. C. Yi, T. Xie et al., “Proteomic analysis of human prostasomes,” Prostate, vol. 56, no. 2, pp. 150–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Nilsson, J. Skog, A. Nordstrand et al., “Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer,” British Journal of Cancer, vol. 100, no. 10, pp. 1603–1607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Ronquist, “Prostasomes are mediators of intercellular communication: from basic research to clinical implications,” Journal of Internal Medicine, vol. 271, no. 4, pp. 400–413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Stegmayr and G. Ronquist, “Promotive effect on human sperm progressive motility by prostasomes,” Urological Research, vol. 10, no. 5, pp. 253–257, 1982. View at Scopus
  80. N. L. Cross and P. Mahasreshti, “Prostasome fraction of human seminal plasma prevents sperm from becoming acrosomally responsive to the agonist progesterone,” Systems Biology in Reproductive Medicine, vol. 39, no. 1, pp. 39–44, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Sahlén, A. Ahlander, A. Frost, G. Ronquist, B. J. Norlén, and B. O. Nilsson, “Prostasomes are secreted from poorly differentiated cells of prostate cancer metastases,” Prostate, vol. 61, no. 3, pp. 291–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. B. O. Nilsson, L. Egevad, M. Jin, G. Ronquist, and C. Busch, “Distribution of prostasomes in neoplastic epithelial prostate cells,” Prostate, vol. 39, pp. 36–40, 1999.
  83. G. Ronquist and B. O. Nilsson, “The Janus-faced nature of prostasomes: their pluripotency favours the normal reproductive process and malignant prostate growth,” Prostate Cancer and Prostatic Diseases, vol. 7, no. 1, pp. 21–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. R. W. Kelly, P. Holland, G. Sibrinski et al., “Extracellular organelles (prostasomes) are immunosuppressive components of human semen,” Clinical and Experimental Immunology, vol. 86, no. 3, pp. 550–556, 1991. View at Scopus
  85. P. O. Forsberg -., S. C. Martin, B. Nilsson, P. Ekman, U. R. Nilsson, and L. Engstrom, “In vitro phosphorylation of human complement factor C3 by protein kinase A and protein kinase C. Effects on the classical and alternative pathways,” Journal of Biological Chemistry, vol. 265, no. 5, pp. 2941–2946, 1990. View at Scopus
  86. A. A. Babiker, G. Ronquist, B. Nilsson, and K. N. Ekdahl, “Overexpression of ecto-protein kinases in prostasomes of metastatic cell origin,” Prostate, vol. 66, no. 7, pp. 675–686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. A. A. Babiker, B. Nilsson, G. Ronquist, L. Carlsson, and K. N. Ekdahl, “Transfer of functional prostasomal CD59 of metastatic prostatic cancer cell origin protects cells against complement attack,” Prostate, vol. 62, no. 2, pp. 105–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. J. A. Fernández, M. J. Heeb, K.-P. Radtke, and J. H. Griffin, “Potent blood coagulant activity of human semen due to prostasome-bound tissue factor,” Biology of Reproduction, vol. 56, no. 3, pp. 757–763, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Sato, Y. Asada, K. Marutsuka, K. Hatakeyama, and A. Sumiyoshi, “Tissue factor induces migration of cultured aortic smooth muscle cells,” Thrombosis and Haemostasis, vol. 75, no. 3, pp. 389–392, 1996. View at Scopus
  90. V. Ollivier, J. Chabbat, J. M. Herbert, J. Hakim, and D. De Prost, “Vascular endothelial growth factor production by fibroblasts in response to factor VIIa binding to tissue factor involves thrombin and factor Xa,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 5, pp. 1374–1381, 2000. View at Scopus
  91. S. C. Heffelfinger, “The renin angiotensin system in the regulation of angiogenesis,” Current Pharmaceutical Design, vol. 13, no. 12, pp. 1215–1229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Sandvig and A. Llorente, “Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3,” Molecular & Cellular Proteomics, vol. 11, no. 7, Article ID M111.012914, 2012. View at Publisher · View at Google Scholar
  93. D. Castellana, F. Zobairi, M. C. Martinez et al., “Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis,” Cancer Research, vol. 69, no. 3, pp. 785–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Itoh, Y. Ito, Y. Ohtsuki et al., “Microvesicles released from hormone-refractory prostate cancer cells facilitate mouse pre-osteoblast differentiation,” Journal of Molecular Histology, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Clemons, K. A. Gelmon, K. I. Pritchard, and A. H. Paterson, “Bone targeted agents and skeletal-related events in breast cancer patients with bone metastases: the state of the art,” Current Oncology, vol. 19, no. 5, pp. 259–268, 2012.
  96. D. Millimaggi, C. Festuccia, A. Angelucci et al., “Osteoblast-conditioned media stimulate membrane vesicle shedding in prostate cancer cells,” International Journal of Oncology, vol. 28, no. 4, pp. 909–914, 2006. View at Scopus
  97. K. Panagopoulos, S. Cross-Knorr, C. Dillard et al., “Reversal of chemosensitivity and induction of cell malignancy of a non-malignant prostate cancer cell line upon extracellular vesicle exposure,” Molecular Cancer, vol. 12, no. 1, p. 118, 2013.
  98. E. Schiffer, “Biomarkers for prostate cancer,” World Journal of Urology, vol. 25, no. 6, pp. 557–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Chen, K. Wang, L. Zhang, C. Li, and Y. Yang, “The discovery of putative urine markers for the specific detection of prostate tumor by integrative mining of public genomic profiles,” PLoS ONE, vol. 6, no. 12, Article ID e28552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Neuhaus, E. Schiffer, P. von Wilcke et al., “Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease,” PLoS ONE, vol. 8, no. 6, Article ID e67514, 2013.
  101. P. J. Mitchell, J. Welton, J. Staffurth et al., “Can urinary exosomes act as treatment response markers in prostate cancer?” Journal of Translational Medicine, vol. 7, article 4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. X. Huang, M. Liang, R. Dittmar, and L. Wang, “Extracellular microRNAs in urologic malignancies: chances and challenges,” International Journal of Molecular Sciences, vol. 14, no. 7, pp. 14785–14799, 2013.
  103. J. Li, C. A. Sherman-Baust, M. Tsai-Turton, R. E. Bristow, R. B. Roden, and P. J. Morin, “Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer,” BMC Cancer, vol. 9, p. 244, 2009. View at Scopus
  104. D. D. Taylor and C. Gercel-Taylor, “MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer,” Gynecologic Oncology, vol. 110, no. 1, pp. 13–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. D. M. Smalley, N. E. Sheman, K. Nelson, and D. Theodorescu, “Isolation and identification of potential urinary microparticle biomarkers of bladder cancer,” Journal of Proteome Research, vol. 7, no. 5, pp. 2088–2096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. H. K. Kim, K. S. Song, Y. S. Park et al., “Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor,” European Journal of Cancer, vol. 39, no. 2, pp. 184–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. M. E. T. Tesselaar, F. P. H. T. M. Romijn, I. K. Van Der Linden, F. A. Prins, R. M. Bertina, and S. Osanto, “Microparticle-associated tissue factor activity: a link between cancer and thrombosis?” Journal of Thrombosis and Haemostasis, vol. 5, no. 3, pp. 520–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Helley, E. Banu, A. Bouziane et al., “Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy,” European Urology, vol. 56, no. 3, pp. 479–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. T. P. Chendrimada, K. J. Finn, X. Ji et al., “MicroRNA silencing through RISC recruitment of eIF6,” Nature, vol. 447, no. 7146, pp. 823–828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. X.-B. Shi, C. G. Tepper, and R. W. D. White, “microRNAs and prostate cancer,” Journal of Cellular and Molecular Medicine, vol. 12, no. 5A, pp. 1456–1465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Montecalvo, A. T. Larregina, W. J. Shufesky et al., “Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes,” Blood, vol. 119, no. 3, pp. 756–766, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Szczyrba, E. Löprich, S. Wach et al., “The microRNA profile of prostate carcinoma obtained by deep sequencing,” Molecular Cancer Research, vol. 8, no. 4, pp. 529–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Schaefer, M. Jung, H.-J. Mollenkopf et al., “Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma,” International Journal of Cancer, vol. 126, no. 5, pp. 1166–1176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. J. C. Brase, M. Johannes, T. Schlomm et al., “Circulating miRNAs are correlated with tumor progression in prostate cancer,” International Journal of Cancer, vol. 128, no. 3, pp. 608–616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Gallo, M. Tandon, I. Alevizos, and G. G. Illei, “The majority of microRNAs detectable in serum and saliva is concentrated in exosomes,” PLoS ONE, vol. 7, no. 3, Article ID e30679, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. H. C. Nguyen, W. Xie, M. Yang et al., “Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer,” Prostate, vol. 73, no. 4, pp. 346–354, 2013.
  119. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. R. J. Bryant, T. Pawlowski, J. W. F. Catto et al., “Changes in circulating microRNA levels associated with prostate cancer,” British Journal of Cancer, vol. 106, no. 4, pp. 768–774, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. I. V. Miller, G. Raposo, U. Welsch et al., “First identification of Ewing's sarcoma-derived extracellular vesicles and exploration of their biological andpotential diagnostic implications,” Biology of the Cell, vol. 105, no. 7, pp. 289–303, 2013.
  122. M. Tsugita, N. Yamada, S. Noguchi et al., “Ewing sarcoma cells secrete EWS/Fli-1 fusion mRNA via microvesicles,” PLoS ONE, vol. 8, no. 10, Article ID e77416, 2013.
  123. S. Khan, J. M. Jutzy, M. M. Valenzuela et al., “Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer,” PLoS ONE, vol. 7, no. 10, Article ID e46737, 2012.
  124. E. van der Pol, A. N. Boing, P. Harrison, A. Sturk, and R. Nieuwland, “Classification, functions, and clinical relevance of extracellular vesicles,” Pharmacological Reviews, vol. 64, no. 3, pp. 676–705, 2012.
  125. N. Chaput and C. Théry, “Exosomes: immune properties and potential clinical implementations,” Seminars in Immunopathology, vol. 33, no. 5, pp. 419–440, 2011. View at Scopus
  126. M. A. Morse, J. Garst, T. Osada et al., “A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer,” Journal of Translational Medicine, vol. 3, article 9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. B. Escudier, T. Dorval, N. Chaput et al., “Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase 1 clinical trial,” Journal of Translational Medicine, vol. 3, article 10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Dai, D. Wei, Z. Wu et al., “Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer,” Molecular Therapy, vol. 16, no. 4, pp. 782–790, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Viaud, C. Théry, S. Ploix et al., “Dendritic cell-derived exosomes for cancer immunotherapy: what's next?” Cancer Research, vol. 70, no. 4, pp. 1281–1285, 2010. View at Publisher · View at Google Scholar · View at Scopus