About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 631813, 18 pages
http://dx.doi.org/10.1155/2014/631813
Research Article

Effect of Acute Gamma Irradiation on Curcuma alismatifolia Varieties and Detection of DNA Polymorphism through SSR Marker

1Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Agrotechnology and Biosciences Division, Malaysian Nuclear Agency (Nuclear Malaysia), 43000 Bangi, Selangor, Malaysia

Received 13 July 2013; Revised 2 December 2013; Accepted 4 December 2013; Published 25 February 2014

Academic Editor: Gjumrakch Aliev

Copyright © 2014 Sima Taheri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Apavatjrut, S. Anuntalabhochai, P. Sirirugsa, and C. Alisi, “Molecular markers in the identification of some early flowering Curcuma L. (Zingiberaceae) species,” Annals of Botany, vol. 84, no. 4, pp. 529–534, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Bunya-Atichart, S. Ketsa, and W. G. Van Doorn, “Postharvest physiology of Curcuma alismatifolia flowers,” Postharvest Biology and Technology, vol. 34, no. 2, pp. 219–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Nakano, J. Amano, Y. Watanabe et al., “Morphological variation in Tricyrtis hirta plants regenerated from heavy ion beam-irradiated embryogenic calluses,” Plant Biotechnology, vol. 27, no. 2, pp. 155–160, 2010. View at Scopus
  4. S. Lamseejan, P. Jompuk, A. Wongpiyasatid, A. Deeseepan, and P. Kwanthammachart, “Gamma-rays induced morphological changes in chrysanthemum. (Chrysanthemum morifolium),” Kasetsart Journal, vol. 34, pp. 417–422, 2000.
  5. G.-J. Lee, S. J. Chung, I. S. Park et al., “Variation in the phenotypic features and transcripts of color mutants of chrysanthemum (Dendranthema grandiflorum) derived from gamma ray mutagenesis,” Journal of Plant Biology, vol. 51, no. 6, pp. 418–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. O. K. Kikuchi, “Orchid flowers tolerance to gamma-radiation,” Radiation Physics and Chemistry, vol. 57, no. 3–6, pp. 555–557, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. N. P. Arnold, N. N. Barthakur, and M. Tanguay, “Mutagenic effects of acute gamma irradiation on miniature roses: target theory approach,” HortScience, vol. 33, no. 1, pp. 127–129, 1998. View at Scopus
  8. A. A. Youssef, M. S. Aly, and M. S. Hussein, “Response of geranium (Pelargonium graveolenus L.) to gamma irradiation and foliar application of Speed Grow,” Egyptian Journal of Horticulture, vol. 27, pp. 41–53, 2000.
  9. N. Chuantang and L. Yazhi, “The radiation induced mutation of canna (Canna L.),” Acta Agricultute Nucleatae Sinica, vol. 2, pp. 33–39, 1998.
  10. M. S. Sigrist, J. B. Pinheiro, J. A. A. Filho, and M. I. Zucchi, “Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers,” Genetics and Molecular Research, vol. 10, no. 1, pp. 419–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Taheri, T. L. Abdullah, N. A. P. Abdullah, and Z. Ahmad, “Genetic relationships among five varieties of Curcuma alismatifolia (Zingiberaceae) based on ISSR markers,” Genetics and Molecular Research, vol. 11, pp. 3069–3076, 2012.
  12. A. Das, V. Kesari, V. M. Satyanarayana, A. Parida, and L. Rangan, “Genetic relationship of Curcuma species from Northeast India using PCR-based markers,” Molecular Biotechnology, vol. 49, no. 1, pp. 65–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Siju, K. Dhanya, S. Syamkumar et al., “Development, characterization and utilization of genomic microsatellite markers in turmeric (Curcuma longa L.),” Biochemical Systematics and Ecology, vol. 38, no. 4, pp. 641–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. K. Panda, S. Mohanty, E. Subudhi, L. Acharya, and S. Nayak, “Assessment of genetic stability of micropropagated plants of Curcuma L. by cytophotometery and RAPD analysis,” International Journal of Integrative Biology (IJIB), vol. 1, pp. 189–195, 2007.
  15. S. Syamkumar and B. Sasikumar, “Molecular marker based genetic diversity analysis of Curcuma species from India,” Scientia Horticulturae, vol. 112, no. 2, pp. 235–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Tautz and M. Renz, “Simple sequences are ubiquitous repetitive components of eukaryotic genomes,” Nucleic Acids Research, vol. 12, no. 10, pp. 4127–4138, 1984. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Tóth, Z. Gáspári, and J. Jurka, “Microsatellites in different eukaryotic genomes: surveys and analysis,” Genome Research, vol. 10, no. 7, pp. 967–981, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Powell, G. C. Machray, and J. Proven, “Polymorphism revealed by simple sequence repeats,” Trends in Plant Science, vol. 1, no. 7, pp. 215–222, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-Y. Lee, W. K. Fai, M. Zakaria et al., “Characterization of polymorphic microsatellite markers, isolated from ginger (Zingiber officinale Rosc.),” Molecular Ecology Notes, vol. 7, no. 6, pp. 1009–1011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Bory, D. Da Silva, A.-M. Risterucci, M. Grisoni, P. Besse, and M.-F. Duval, “Development of microsatellite markers in cultivated vanilla: polymorphism and transferability to other vanilla species,” Scientia Horticulturae, vol. 115, no. 4, pp. 420–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. I. C. Menezes, F. W. Cidade, A. P. Souza, and I. C. Sampaio, “Isolation and characterization of microsatellite loci in the black pepper, Piper Nigrum L. (Piperaceae),” Conservation Genetics Resources, vol. 1, no. 1, pp. 209–212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. S. Sigrist, J. B. Pinheiro, J. A. Azevedo-Filho, et al., “Development and characterization of microsatellite markers for turmeric (Curcuma longa),” Plant Breeding, vol. 129, no. 5, pp. 570–573, 2010.
  23. V. Kumar, Morphological and molecular characterization of induced mutants in Groundnut [Ph.D. thesis], University of Agricultural Sciences, Dharwad, India, 2008.
  24. J. R. Sharma, Statistical and Biometrical Techniques in Plant Breeding, New Age International, New Delhi, India, 1998.
  25. J. J. Doyle and J. L. Doyle, “A rapid DNA isolation procedure for small quantities of fresh leaf tissue,” Phytochemical Bulletin, vol. 19, pp. 11–15, 1987.
  26. M. S. Sigrist, J. B. Pinheiro, J. A. Azevedo-Filho et al., “Development and characterization of microsatellite markers for turmeric (Curcuma longa),” Plant Breeding, vol. 129, no. 5, pp. 570–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Ø. Hammer, D. A. T. Harper, and P. D. Ryan, “Past: paleontological statistics software package for education and data analysis,” Palaeontologia Electronica, vol. 4, no. 1, pp. 4–9, 2001. View at Scopus
  28. K. Liu and S. V. Muse, “PowerMaker: an integrated analysis environment for genetic maker analysis,” Bioinformatics, vol. 21, no. 9, pp. 2128–2129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. F. J. Rohlf, NTSYS-Pc: Numerical Taxonomy System, Version 2. 1, Exeter Publishing, Setauket, New York, NY, USA, 2002.
  30. M. Nei, “Analysis of gene diversity in subdivided populations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no. 12, 1973. View at Scopus
  31. S. Kadkhodaei, M. Shahnazari, M. K. Nekouei et al., “A comparative study of morphological and molecular diversity analysis among cultivated almonds (Prunus dulcis),” Australian Journal of Crop Science, vol. 5, no. 1, pp. 82–91, 2011. View at Scopus
  32. T. L. Abdullah, J. Endan, and B. M. Nazir, “Changes in flower development, chlorophyll mutation and alteration in plant morphology of Curcuma alismatifolia by gamma irradiation,” American Journal of Applied Sciences, vol. 6, no. 7, pp. 1436–1439, 2009.
  33. E. Kovács and Á. Keresztes, “Effect of gamma and UV-B/C radiation on plant cells,” Micron, vol. 33, no. 2, pp. 199–210, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. H. L. Ramesh, Y. Murthy, and V. N. Munirajappa, “Effect of gamma radiation on morphological and growth parameters of Mulberry variety M5,” International Journal of Science and Nature, vol. 3, pp. 447–452, 2010.
  35. K. Pongchawee, R. Pradissan, and W. Pipatcharoenchai, “Induce mutation in Anubias spp. through in vitro Irradiation,” Thai Fisheries Gazette, vol. 60, pp. 493–497, 2007.
  36. P. Tangpong, T. Taychasinpitak, C. Jompuk, and P. Jompuk, “Effects of acute and chronic gamma irradiations on in vitro culture of Anubias congensis N.E. Brown,” Kasetsart Journal, vol. 43, no. 3, pp. 449–457, 2009. View at Scopus
  37. R. K. Hegde, Studies on induced mutagenesis and in vitro regeneration in turmeric (Curcuma longa L.) [Ph.D. thesis], University of Agricultural Sciences, Dharwad, India, 2006.
  38. M. P. Giridharan and S. Balakrishnan, “Gamma ray induced variability in vegetative and floral characters of ginger. Indian Cocoa,” Arecanut and Spices Journal, vol. 15, pp. 68–672, 1992.
  39. A. P. Cesarett, “Effect of radiation on higher plants and plant communities,” in Radiation Biology, United States Atomic Energy Commission, pp. 284–309, Washington, DC, USA, 1968.
  40. G. W. Seung, Y. C. Byung, J.-H. Kim et al., “Ultrastructural changes of cell organelles in Arabidopsis stems after gamma irradation,” Journal of Plant Biology, vol. 48, no. 2, pp. 195–200, 2005. View at Scopus
  41. B. S. Ahloowalia and M. Maluszynski, “Induced mutations—a new paradigm in plant breeding,” Euphytica, vol. 118, no. 2, pp. 167–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Voisine, L.-P. Vézina, and C. Willemot, “Induction of senescence-like deterioration of microsomal membranes from cauliflower by free radicals generated during gamma irradiation,” Plant Physiology, vol. 97, no. 2, pp. 545–550, 1991. View at Scopus
  43. N. Shikazono, Y. Yokota, S. Kitamura et al., “Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions,” Genetics, vol. 163, no. 4, pp. 1449–1455, 2003. View at Scopus
  44. T. Nakatsuka, M. Nishihara, K. Mishiba, and S. Yamamura, “Two different mutations are involved in the formation of white-flowered gentian plants,” Plant Science, vol. 169, no. 5, pp. 949–958, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Mato, T. Onozaki, Y. Ozeki et al., “Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus),” Scientia Horticulturae, vol. 84, no. 3-4, pp. 333–347, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. S. G. Wi, B. Y. Chung, J.-S. Kim et al., “Effects of gamma irradiation on morphological changes and biological responses in plants,” Micron, vol. 38, no. 6, pp. 553–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Lee Chin, Effects of light intensity and daylength on growth and flowering of siam tulip (Curcuma alismatifolia var. Chiang Mai Pink) [Ph.D. thesis], University Putra Malaysia, 2007.
  48. A. Hagiladi, N. Umiel, and X. H. Yang, “Curcuma alismatifolia II. Effects of temperature and daylength on the development of flowers and propagules,” Acta Horticulture, vol. 430, pp. 755–761, 1997.
  49. M. Hagidimitriou, A. Katsiotis, G. Menexes, C. Pontikis, and M. Loukas, “Genetic diversity of major greek olive cultivars using molecular (AFLPs and RAPDs) markers and morphological traits,” Journal of the American Society for Horticultural Science, vol. 130, no. 2, pp. 211–217, 2005. View at Scopus
  50. N. Babaei, N. A. P. Abdullah, G. Saleh, and T. L. Abdullah, “Isolation and characterization of microsatellite markers and analysis of genetic variability in Curculigo latifolia Dryand,” Molecular Biology Reports, vol. 39, pp. 9869–9877, 2012. View at Publisher · View at Google Scholar
  51. B. Shiran, N. Amirbakhtiar, S. Kiani, S. Mohammadi, B. E. Sayed-Tabatabaei, and H. Moradi, “Molecular characterization and genetic relationship among almond cultivars assessed by RAPD and SSR markers,” Scientia Horticulturae, vol. 111, no. 3, pp. 280–292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Singh, M. K. Panda, and S. Nayak, “Evaluation of genetic diversity in turmeric (Curcuma longa L.) using RAPD and ISSR markers,” Industrial Crops and Products, vol. 37, no. 1, pp. 284–291, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Paisooksantivatana, S. Kako, and H. Seko, “Genetic diversity of Curcuma alismatifolia Gagnep. (Zingiberaceae) in Thailand as revealed by allozyme polymorphism,” Genetic Resources and Crop Evolution, vol. 48, no. 5, pp. 459–465, 2001. View at Publisher · View at Google Scholar · View at Scopus