About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 654170, 15 pages
http://dx.doi.org/10.1155/2014/654170
Research Article

A Novel Phospholipase A2 (D49) from the Venom of the Crotalus oreganus abyssus (North American Grand Canyon Rattlesnake)

1Department of Chemistry, Biochemistry and Bioprocess Engineering, Federal University of São João Del Rei, Campus Alto Paraopeba, 34420-000 Ouro Branco, MG, Brazil
2Department of Biochemistry of Biology Institute, State University of Campinas, 13083-970 Campinas, SP, Brazil
3School of Arts, Sciences and Humanities, University of São Paulo, 03828-000 São Paulo, Brazil
4Center of Natural Sciences and Humanities, Federal University of ABC, 09210-170 Santo Andre, SP, Brazil
5Center of Biomolecules Study Applied to Health, Fiocruz Rondônia, Oswaldo Cruz Foundation, Medicine Department, Federal University of Rondônia, 76812-245 Porto Velho, Brazil
6Proteomics Platform, Barcelona Science Park, University of Barcelona, Baldiri Reixac, 08208 Barcelona, Spain
7Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, 08280 Barcelona, Spain
8CIBER-BBN, Barcelona Science Park, University of Barcelona, 08280 Barcelona, Spain
9Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
10School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa

Received 31 August 2013; Revised 25 November 2013; Accepted 6 December 2013; Published 24 February 2014

Academic Editor: Edward G. Rowan

Copyright © 2014 W. Martins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Klauber, Their Habits, Life Histories and Influences on Mankind, vol. 2, University of California Press, Berkeley, Calif, USA, 1956.
  2. S. P. Mackessy, “Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis sensu lato): toxicity versus tenderizers,” Toxicon, vol. 55, no. 8, pp. 1463–1474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. K. G. Ashton, “Body size variation among mainland populations of the western rattlesnake (Crotalus viridis),” Evolution, vol. 55, no. 12, pp. 2523–2533, 2001. View at Scopus
  4. K. G. Ashton and A. de Queiroz, “Molecular systematics of the western rattlesnake, Crotalus viridis (Viperidae), with comments on the utility of the D-loop in phylogenetic studies of snakes,” Molecular Phylogenetics and Evolution, vol. 21, no. 2, pp. 176–189, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Pook, W. Wüster, and R. S. Thorpe, “Historical biogeography of the Western Rattlesnake (Serpentes: Viperidae: Crotalus viridis), inferred from mitochondrial DNA sequence information,” Molecular Phylogenetics and Evolution, vol. 15, no. 2, pp. 269–282, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. D. C. I. Koh, A. Armugam, and K. Jeyaseelan, “Snake venom components and their applications in biomedicine,” Cellular and Molecular Life Sciences, vol. 63, no. 24, pp. 3030–3041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. K. Arni and R. J. Ward, “Phospholipase A2: a structural review,” Toxicon, vol. 34, no. 8, pp. 827–841, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. C. D. Funk, “Prostaglandins and leukotrienes: advances in eicosanoid biology,” Science, vol. 294, no. 5548, pp. 1871–1875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. F. S. Markland Jr., “Snake venoms and the hemostatic system,” Toxicon, vol. 36, no. 12, pp. 1749–1800, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. da Silva, M. Comar Jr., K. M. T. Oliveira et al., “Molecular modeling of the inhibition of enzyme PLA2 from snake venom by dipyrone and 1-phenyl-3-methyl-5-pyrazolone,” International Journal of Quantum Chemistry, vol. 108, no. 13, pp. 2576–2585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Mallat, G. Lambeau, and A. Tedgui, “Lipoprotein-associated and secreted phospholipases A2 in cardiovascular disease: roles as biological effectors and biomarkers,” Circulation, vol. 122, no. 21, pp. 2183–2200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. de Luca, A. Minucci, P. Cogo et al., “Secretory phospholipase A2 pathway during pediatric acute respiratory distress syndrome: a preliminary study,” Pediatric Critical Care Medicine, vol. 12, no. 1, pp. e20–e24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Ezzeddini, M. Darabi, B. Ghasemi et al., “Circulating phospholipase-A2 activity in obstructive sleep apnea and recurrent tonsillitis,” International Journal of Pediatric Otorhinolaryngology, vol. 76, no. 4, pp. 471–474, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Chalbot, H. Zetterberg, K. Blennow et al., “Blood-cerebrospinal fluid barrier permeability in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 25, no. 3, pp. 505–515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Farooqui, M. L. Litsky, T. Farooqui, and L. A. Horrocks, “Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders,” Brain Research Bulletin, vol. 49, no. 3, pp. 139–153, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. M. E. S. Martins-Santos, R. R. Resende, F. C. H. Pinto et al., “Effect of a pool of peptides isolated from crotalus durissus terrificus (South American Rattlesnake) venom on glucose levels of mice fed on a high-fat diet,” International Journal of Peptide Research and Therapeutics, vol. 17, no. 3, pp. 225–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. L. da Silva, J. R. Almeida, L. M. Resende et al., “Isolation and characterization of a natriuretic peptide from Crotalus oreganus abyssus (grand canyon rattlesnake) and its effects on systemic blood pressure and nitrite levels,” International Journal of Peptide Research and Therapeutics, vol. 17, no. 3, pp. 165–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. da Silva, C. A. Dias-Júnior, P. Baldasso et al., “Vascular effects and electrolyte homeostasis of the natriuretic peptide isolated from Crotalus oreganus abyssus (North American Grand Canyon rattlesnake) venom,” Peptides, vol. 36, pp. 206–212, 2012.
  19. L. B. Silveira, D. P. Marchi-Salvador, N. A. Santos-Filho et al., “Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops moojeni snake venom,” Journal of Pharmaceutical and Biomedical Analysis, vol. 73, pp. 35–43, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. D. C. S. Damico, T. Vassequi-Silva, F. D. Torres-Huaco et al., “LmrTX, a basic PLA2 (D49) purified from Lachesis muta rhombeata snake venom with enzymatic-related antithrombotic and anticoagulant activity,” Toxicon, vol. 60, pp. 773–781, 2012.
  21. S. Marcussi, R. G. Stábeli, N. A. Santos-Filho et al., “Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA,” Toxicon, vol. 65, pp. 9–14, 2013.
  22. S. Marcussi, P. R. S. Santos, D. L. Menaldo et al., “Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes,” Mutation Research, vol. 724, no. 1-2, pp. 59–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. D. C. S. Damico, M. A. C. Höfling, M. Cintra et al., “Pharmacological study of edema and myonecrosis in mice induced by venom of the bushmaster snake (Lachesis muta muta) and its basic Asp49 phospholipase A2 (LmTX-I),” Protein Journal, vol. 27, no. 6, pp. 384–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Romero, S. Marcussi, D. P. Marchi-Salvador et al., “Enzymatic and structural characterization of a basic phospholipase A2 from the sea anemone Condylactis gigantea,” Biochimie, vol. 92, no. 8, pp. 1063–1071, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. S. Teixeira, L. B. Silveira, F. M. N. da Silva et al., “Molecular characterization of an acidic phospholipase A2 from Bothrops pirajai snake venom: synthetic C-terminal peptide identifies its antiplatelet region,” Archives of Toxicology, vol. 85, no. 10, pp. 1219–1233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Z. Oliveira, N. A. Santos-Filho, D. L. Menaldo et al., “Structural and functional characterization of a γ-type phospholipase A2 inhibitor from Bothrops jararacussu Snake Plasma,” Current Topics in Medicinal Chemistry, vol. 11, no. 20, pp. 2509–2519, 2011. View at Scopus
  27. J. A. F. P. Villar, F. T. D. Lima, C. L. Veber et al., “Synthesis and evaluation of nitrostyrene derivative compounds, new snake venom phospholipase A2 inhibitors,” Toxicon, vol. 51, no. 8, pp. 1467–1478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. C. S. Nunomura, V. G. Oliveira, S. L. da Silva, and S. M. Nunomura, “Characterization of bergenin in Endopleura uchi bark and its anti-inflammatory activity,” Journal of the Brazilian Chemical Society, vol. 20, no. 6, pp. 1060–1064, 2009. View at Scopus
  29. M. L. da Silva, S. Marcussi, R. S. Fernandes et al., “Anti-snake venom activities of extracts and fractions from callus cultures of Sapindus saponaria,” Pharmaceutical Biology, vol. 50, no. 3, pp. 366–375, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. E. S. de Alvarenga, S. A. Silva, L. C. A. Barosa et al., “Synthesis and evaluation of sesquiterpene lactone inhibitors of phospholipase A2 from Bothrops jararacussu,” Toxicon, vol. 57, no. 1, pp. 100–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. L. da Silva, A. K. Calgarotto, V. Maso et al., “Molecular modeling and inhibition of phospholipase A2 by polyhydroxy phenolic compounds,” European Journal of Medicinal Chemistry, vol. 44, no. 1, pp. 312–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. D. L. Souza, E. Rodrigues-Filho, A. Q. L. Souza et al., “Koninginins, phospholipase A2 inhibitors from endophytic fungus Trichoderma koningii,” Toxicon, vol. 51, no. 2, pp. 240–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. L. da Silva, A. K. Calgarotto, J. S. Chaar, and S. Marangoni, “Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with anti-PLA2 activity,” Toxicon, vol. 52, no. 6, pp. 655–666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Murakami, Y. Taketomi, C. Girard, K. Yamamoto, and G. Lambeau, “Emerging roles of secreted phospholipase A2 enzymes: lessons from transgenic and knockout mice,” Biochimie, vol. 92, no. 6, pp. 561–582, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. I. dos Santos, M. Cintra-Francischinelli, R. J. Borges et al., “Structural, functional, and bioinformatics studies reveal a new snake venom homologue phospholipase A2 class,” Proteins, vol. 79, no. 1, pp. 61–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Soares, M. R. M. Fontes, and J. R. Giglio, “Phospholipase A2 myotoxins from Bothrops snake venoms: structure-function relationship,” Current Organic Chemistry, vol. 8, no. 17, pp. 1677–1690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Tsai, Y. Wang, Y. Chen, and A. T. Tu, “Geographic variations, cloning, and functional analyses of the venom acidic phospholipases A2 of Crotalus viridis viridis,” Archives of Biochemistry and Biophysics, vol. 411, no. 2, pp. 289–296, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Cho, M. A. Markowitz, and F. J. Kézdy, “A new class of phospholipase A2 substrates: kinetics of the phospholipase A2 catalyzed hydrolysis of 3-(Acyloxy)-4-nitrobenzoic acids,” Journal of the American Chemical Society, vol. 110, no. 15, pp. 5166–5171, 1988. View at Scopus
  39. C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic interactions,” Protein Science, vol. 2, no. 9, pp. 1511–1519, 1993. View at Scopus
  40. F. Melo, D. Devos, E. Depiereux, and E. Feytmans, “ANOLEA: a www server to assess protein structures,” Intelligent Systems for Molecular Biology, vol. 97, pp. 110–113, 1997.
  41. J. Jasti, M. Paramasivam, A. Srinivasan, and T. P. Singh, “Structure of an acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) at 2.6 A resolution reveals a novel intermolecular interaction,” Acta Crystallographica D, vol. 60, no. 1, pp. 66–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Pasek, C. Keith, D. Feldman, and P. B. Sigler, “Characterization of crystals of two venom phospholipases A2,” Journal of Molecular Biology, vol. 97, no. 3, pp. 395–397, 1975. View at Scopus
  43. M. Holzer and S. P. Mackessy, “An aqueous endpoint assay of snake venom phospholipase A2,” Toxicon, vol. 34, no. 10, pp. 1149–1155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. B. P. Smart, Y. H. Pan, A. K. Weeks, J. G. Bollinger, B. J. Bahnson, and M. H. Gelb, “Inhibition of the complete set of mammalian secreted phospholipases A2 by indole analogues: a structure-guided study,” Bioorganic and Medicinal Chemistry, vol. 12, no. 7, pp. 1737–1749, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Han, B. Ma, and K. Zhang, “Spider: software for protein identification from sequence tags with de novo sequencing error,” Journal of Bioinformatics and Computational Biology, vol. 3, no. 3, pp. 697–716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Ma and R. Johnson, “De Novo sequencing and homology searching,” Molecular and Cellular Proteomics, vol. 11, no. 2, Article ID O111.014902, 2011. View at Publisher · View at Google Scholar
  47. J. U. Bowie, R. Luthy, and D. Eisenberg, “A method to identify protein sequences that fold into a known three-dimensional structure,” Science, vol. 253, no. 5016, pp. 164–170, 1991. View at Scopus
  48. H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: a message-passing parallel molecular dynamics implementation,” Computer Physics Communications, vol. 91, no. 1–3, pp. 43–56, 1995. View at Scopus
  49. E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: a package for molecular simulation and trajectory analysis,” Journal of Molecular Modeling, vol. 7, no. 8, pp. 306–317, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. H. J. C. Berendsen, J. P. M. Postma, W. F. V. Gunsteren, and J. Hermans, “Interaction models for water in relation to protein hydration,” in Intermolecular Forces, B. Pullman, Ed., pp. 331–342, Reidel, Dordrecht, The Netherlands, 1981.
  51. W. F. V. Gunsteren, S. R. Billeter, A. A. Eising et al., Biomolecular Simulation: The GROMOS96 Manual and User Guide, VdF Hochschulverlag ETHZ Zurich, 1996.
  52. W. L. de Lano, The PyMOL Molecular Graphics System, Volume 0. 99, DeLano Scientific, San Francisco, Calif, USA, 2006.
  53. R. Luthy, J. U. Bowie, and D. Eisenberg, “Assesment of protein models with three-dimensional profiles,” Nature, vol. 356, no. 6364, pp. 83–85, 1992. View at Publisher · View at Google Scholar · View at Scopus
  54. J. U. Bowie, R. Luthy, and D. Eisenberg, “A method to identify protein sequences that fold into a known three-dimensional structure,” Science, vol. 253, no. 5016, pp. 164–170, 1991. View at Scopus
  55. M. Wiederstein and M. J. Sippl, “ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins,” Nucleic Acids Research, vol. 35, pp. W407–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. J. Sippl, “Recognition of errors in three-dimensional structures of proteins,” Proteins, vol. 17, no. 4, pp. 355–362, 1993. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Gopalakrishnan, G. Sowmiya, S. S. Sheik, and K. Sekar, “Ramachandran plot on the web (2.0),” Protein and Peptide Letters, vol. 14, no. 7, pp. 669–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Faure, H. Xu, and F. A. Saul, “Crystal structure of crotoxin reveals key residues involved in the stability and toxicity of this potent heterodimeric β-neurotoxin,” Journal of Molecular Biology, vol. 412, no. 2, pp. 176–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. B. Harris, Snake Toxins, Pergamont Press, New York, NY, USA, 1991.
  60. J. Gutiérrez and B. Lomonte, “Phospholipase A2 myotoxins from Bothrops snake venoms,” Toxicon, vol. 33, no. 11, pp. 1405–1424, 1995. View at Publisher · View at Google Scholar · View at Scopus
  61. E. A. Dennis, J. Cao, Y. Hsu, V. Magrioti, and G. Kokotos, “Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention,” Chemical Reviews, vol. 111, no. 10, pp. 6130–6185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. J. M. Gutierrez, F. Chaves, J. A. Gene, B. Lomonte, Z. Camacho, and K. Schosinsky, “Myonecrosis induced in mice by a basic myotoxin isolated from the venom of the snake Bothrops nummifer (jumping viper) from Costa Rica,” Toxicon, vol. 27, no. 7, pp. 735–745, 1989. View at Scopus
  63. C. J. Duncan, “Role of intracellular calcium in promoting muscle damage: a strategy for controlling the dystrophic condition,” Experientia, vol. 34, no. 12, pp. 1531–1535, 1978. View at Scopus
  64. B. F. Trump, I. K. Berezesky, and A. R. Vargas, “Cell death the disease process. The role of calcium,” in Cell Death in Biology and Pathology, Chapman and Hall, 1981.
  65. P. Gopalakrishnakone, D. W. Dempster, B. J. Hawgood, and H. Y. Elder, “Cellular and mitochondrial changes induced in the structure of murine skeletal muscle by crotoxin, a neurotoxic phospholipase A2 complex,” Toxicon, vol. 22, no. 1, pp. 85–98, 1984. View at Scopus
  66. E. C. T. Landucci, R. C. Castro, M. F. Pereira et al., “Mast cell degranulation induced by two phospholipase A2 homologues: dissociation between enzymatic and biological activities,” European Journal of Pharmacology, vol. 343, no. 2-3, pp. 257–263, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. E. C. T. Landucci, R. C. de Castro, M. Toyama et al., “Inflammatory oedema induced by the Lys-49 phospholipase A2 homologue piratoxin-I in the rat and rabbit. Effect of polyanions and p-bromophenacyl bromide,” Biochemical Pharmacology, vol. 59, no. 10, pp. 1289–1294, 2000. View at Publisher · View at Google Scholar · View at Scopus