About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 680131, 6 pages
Research Article

Effect of Chronic Exposure to Prometryne on Oxidative Stress and Antioxidant Response in Red Swamp Crayfish (Procambarus clarkii)

University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic

Received 5 December 2013; Revised 14 February 2014; Accepted 14 February 2014; Published 18 March 2014

Academic Editor: Zdenka Svobodova

Copyright © 2014 Alžběta Stará et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The aim of the study was to investigate effects of the triazine herbicide prometryne on red swamp crayfish on the basis of oxidative stress, antioxidant indices in hepatopancreas and muscle, and histopathology of hepatopancreas. Crayfish were exposed to prometryne concentrations of 0.51 μg L−1, 0.144 mg L−1, and 1.144 mg L−1 for 11 and 25 days. Indices of oxidative stress (thiobarbituric acid reactive substances (TBARS)), and antioxidant parameters (superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR)) in crayfish muscle and hepatopancreas were measured. Chronic exposure to prometryne did not showed the impact of oxidative damage to cells. Changes activity of the antioxidant enzymes SOD, CAT, and GR were observed in all tested concentrations to prometryne for 11 and 25 days () as compared with the control group. We did not see any differences in histopatological examination to hepatopancreas. Prolonged exposure of prometryne did not result in oxidative damage to cell lipids and proteins, but it led to changes in antioxidant activity in crayfish tissues. Changes in antioxidant systems were also observed in the environmental prometryne concentration of 0.51 μg L−1. The results suggest that antioxidant responses may have potential as biomarkers for monitoring residual triazine herbicides in aquatic environments.