About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 680131, 6 pages
http://dx.doi.org/10.1155/2014/680131
Research Article

Effect of Chronic Exposure to Prometryne on Oxidative Stress and Antioxidant Response in Red Swamp Crayfish (Procambarus clarkii)

University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic

Received 5 December 2013; Revised 14 February 2014; Accepted 14 February 2014; Published 18 March 2014

Academic Editor: Zdenka Svobodova

Copyright © 2014 Alžběta Stará et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. P. Schwarzenbach, B. I. Escher, K. Fenner et al., “The challenge of micropollutants in aquatic systems,” Science, vol. 313, no. 5790, pp. 1072–1077, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. E. D. Ongley, Control of Water Pollution From Agriculture, Food and Agriculture Organization, 1996.
  3. R. M. Harrison, Pollution: Causes, Effects and Control, Royal Society of Chemistry, 2001.
  4. S. K. Agarwal, Water Pollution, APH Publishing Corporation, 2005.
  5. U. S. EPA, Environmental Protection Agency. R.E.D, Fact Prometryn, 1996.
  6. M. A. Kamrin, Pesticide Profiles, Lewis Publishers, Boca Raton, Fla, USA, 1997.
  7. W. Erickson and L. Turner, Prometryn Analysis of Risks to Endangered and Threatened Salmon and Steelhead, Environmental Field Branch, Office of Pesticide Programs, 2002.
  8. L. Jiang, L. Ma, Y. Sui, S. Q. Han, and H. Yang, “Mobilization and plant accumulation of prometryne in soil by two different sources of organic matter,” Journal of Environmental Monitoring, vol. 13, no. 7, pp. 1935–1943, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Zhou, F. Hu, J. Jiao, M. Liu, and H. Li, “Effects of bacterial-feeding nematodes and prometryne-degrading bacteria on the dissipation of prometryne in contaminated soil,” Journal of Soils and Sediments, vol. 12, no. 4, pp. 576–585, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Papadopoulou-Mourkidou, D. G. Karpouzas, J. Patsias et al., “The potential of pesticides to contaminate the groundwater resources of the Axios river basin in Macedonia, Northern Greece. Part I. Monitoring study in the north part of the basin,” Science of the Total Environment, vol. 321, no. 1–3, pp. 127–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Vryzas, C. Alexoudis, G. Vassiliou, K. Galanis, and E. Papadopoulou-Mourkidou, “Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece,” Ecotoxicology and Environmental Safety, vol. 74, no. 2, pp. 174–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Caquet, M. Roucaute, N. Mazzella et al., “Risk assessment of herbicides and booster biocides along estuarine continuums in the Bay of Vilaine area (Brittany, France),” Environmental Science and Pollution Research, vol. 20, pp. 651–666, 2013.
  13. Czech Hydrometeorological Institute, “On-line water duality database,” 2011, http://hydro.chmi.cz/pasporty/pasport.php?seq=3287750.
  14. S. E. Kegley, B. R. Hill, S. Orme, and A. H. Choi, PAN Pesticide Database, Pesticide Action Network, North America (San Francisco, CA, 2010), Pesticide Action Network, Oakland, Calif, USA, 2010.
  15. A. Küster and R. Altenburger, “Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species,” Chemosphere, vol. 67, no. 1, pp. 194–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. U.S. EPA—Environmental protection agency, Reregistration Eligibility Decision (RED) Prometryn, 1996.
  17. G. V. Popova, “Characteristics of the effect of the herbicide prometryn on fish,” Nauchnye Osnovy Okhrany Prirody, vol. 4, pp. 118–125, 1976.
  18. A. Stara, J. Machova, and J. Velisek, “Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.),” Neuro Endocrinology Letters, vol. 33, supplement 3, pp. 130–135, 2012. View at Scopus
  19. A. Stara, J. Kristan, E. Zuskova, and J. Velisek, “Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.),” Pesticide Biochemistry and Physiology, vol. 105, pp. 18–23, 2013.
  20. J. Velisek, A. Stara, E. Zuskova, and Z. Svobodova, “Use of biometric, hematologic, and plasma biochemical variables, and histopathology to assess the chronic effects of the herbicide prometryn on Common carp,” Veterinary Clinical Pathology, vol. 42, no. 4, pp. 508–515, 2013. View at Publisher · View at Google Scholar
  21. W. T. Momot, “Redefining the role of crayfish in aquatic ecosystems,” Reviews in Fisheries Science, vol. 3, no. 1, pp. 33–63, 1995. View at Scopus
  22. M. Buric, A. Kouba, J. Machova, I. Mahovska, and P. Kozak, “Toxicity of the organophosphate pesticide diazinon to crayfish of differing age,” International Journal of Environmental Science and Technology, vol. 10, pp. 607–610, 2013.
  23. A. Kouba, I. Kuklina, H. Niksirat, J. Machova, and P. Kozak, “Tolerance of signal crayfish (Pacifastacus leniusculus) to Persteril 36 supports use of peracetic acid in astaciculture,” Aquaculture, vol. 350–353, pp. 71–74, 2012.
  24. J. Velisek, A. Kouba, and A. Stara, “Acute toxicity of triazine pesticides to juvenile signal crayfish (Pacifastacus leniusculus),” Neuroendocrinology Letters, vol. 34, pp. 31–36, 2013.
  25. D. Barcelo and M. C. Hennion, Trace Determination of Pesticides and their Degradation Products in Water, Mass Spectrometric Methods, LC-MS, Elsevier, Amsterdam, The Netherlands, 1997.
  26. V. I. Lushchak, T. V. Bagnyukova, V. V. Husak, L. I. Luzhna, O. V. Lushchak, and K. B. Storey, “Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 8, pp. 1670–1680, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Marklund and G. Marklund, “Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase,” European Journal of Biochemistry, vol. 47, no. 3, pp. 469–474, 1974. View at Scopus
  28. R. F. Beers Jr. and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” The Journal of Biological Chemistry, vol. 195, no. 1, pp. 133–140, 1952. View at Scopus
  29. I. Carlberg and B. Mannervik, “Purification and characterization of the flavoenzyme glutathione reductase from rat liver,” Journal of Biological Chemistry, vol. 250, no. 14, pp. 5475–5480, 1975. View at Scopus
  30. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  31. J. H. Zar, Biostatistical Analysis, Prentice-Hall, New Jersey, NJ, USA, 3rd edition, 1996.
  32. J. Velisek, Z. Svobodova, V. Piackova et al., “Effects of metribuzin on rainbow trout (Oncorhynchus mykiss),” Veterinarni Medicina, vol. 53, no. 6, pp. 324–332, 2008. View at Scopus
  33. A. Stara, J. Machova, and J. Velisek, “Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.),” Environmental Toxicology and Pharmacology, vol. 33, no. 2, pp. 334–343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Valavanidis, T. Vlahogianni, M. Dassenakis, and M. Scoullos, “Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants,” Ecotoxicology and Environmental Safety, vol. 64, no. 2, pp. 178–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. T. H. Vlahogianni and A. Valavanidis, “Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis,” Chemistry and Ecology, vol. 23, no. 5, pp. 361–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, 2007.
  37. L. P. R. Venancio, M. I. A. Silva, T. L. da Silva et al., “Pollution-induced metabolic responses in hypoxia-tolerant freshwater turtles,” Ecotoxicology and Environmental Safety, vol. 97, pp. 1–9, 2013.
  38. R. M. Martínez-Álvarez, A. E. Morales, and A. Sanz, “Antioxidant defenses in fish: biotic and abiotic factors,” Reviews in Fish Biology and Fisheries, vol. 15, no. 1-2, pp. 75–88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Kohen and A. Nyska, “Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification,” Toxicologic Pathology, vol. 30, no. 6, pp. 620–650, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. C. D. Nwani, W. S. Lakra, N. S. Nagpure, R. Kumar, B. Kushwaha, and S. Kumar, “Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa Punctatus (Bloch),” International Journal of Environmental Research and Public Health, vol. 7, no. 8, pp. 3298–3312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Van der Oost, J. Beyer, and N. P. E. Vermeulen, “Fish bioaccumulation and biomarkers in environmental risk assessment: a review,” Environmental Toxicology and Pharmacology, vol. 13, no. 2, pp. 57–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Djordjevic, A. Djordjevic, M. Adzic, A. Niciforovic, and M. B. Radojcic, “Chronic stress differentially affects antioxidant enzymes and modifies the acute stress response in liver of wistar rats,” Physiological Research, vol. 59, no. 5, pp. 729–736, 2010. View at Scopus
  43. Y. Jin, X. Zhang, L. Shu et al., “Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio),” Chemosphere, vol. 78, no. 7, pp. 846–852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Velisek, A. Stara, J. Kolarova, and Z. Svobodova, “Biochemical, physiological and morfological responses in common carp (Cyprinus carpio L.) after long-term exposure to terbutryn in real environmental concentration,” Pesticide Biochemistry and Physiology, vol. 100, no. 3, pp. 305–313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. M. M. A. Desouky, H. Abdel-Gawad, and B. Hegazi, “Distribution, fate and histopathological effects of ethion insecticide on selected organs of the crayfish, Procambarus clarkii,” Food and Chemical Toxicology, vol. 52, pp. 42–52, 2013.