About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 701571, 8 pages
http://dx.doi.org/10.1155/2014/701571
Review Article

Role of the Vasa Vasorum and Vascular Resident Stem Cells in Atherosclerosis

Department of Cardiovascular Regeneration and Innovation and Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan

Received 22 August 2013; Revised 19 January 2014; Accepted 26 January 2014; Published 5 March 2014

Academic Editor: Masanori Aikawa

Copyright © 2014 Jun-ichi Kawabe and Naoyuki Hasebe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Ross, “Atherosclerosis: an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. Burke, A. Farb, G. T. Malcom, Y.-H. Liang, J. Smialek, and R. Virmani, “Coronary risk factors and plaque morphology in men with coronary disease who died suddenly,” The New England Journal of Medicine, vol. 336, no. 18, pp. 1276–1282, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. J. N. E. Redgrave, J. K. Lovett, P. J. Gallagher, and P. M. Rothwell, “Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: the Oxford plaque study,” Circulation, vol. 113, no. 19, pp. 2320–2328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Doyle and N. Caplice, “Plaque neovascularization and antiangiogenic therapy for atherosclerosis,” Journal of the American College of Cardiology, vol. 49, no. 21, pp. 2073–2080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Mulligan-Kehoe, “The vasa vasorum in diseased and nondiseased arteries,” The American Journal of Physiology, vol. 298, no. 2, pp. H295–H305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. C. Langheinrich, M. Kampschulte, T. Buch, and R. M. Bohle, “Vasa vasorum and atherosclerosis: quid novi?” Thrombosis and Haemostasis, vol. 97, no. 6, pp. 873–879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Tilki, H.-P. Hohn, B. Ergün, S. Rafii, and S. Ergün, “Emerging biology of vascular wall progenitor cells in health and disease,” Trends in Molecular Medicine, vol. 15, no. 11, pp. 501–509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Dotsenko, “Stem/progenitor cells, atherosclerosis and cardiovascular regeneration,” Open Cardiovascular Medicine Journal, vol. 4, no. 1, pp. 97–104, 2010. View at Scopus
  10. L. Díaz-Flores, R. Gutiérrez, J. F. Madrid et al., “Pericytes: morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche,” Histology and histopathology, vol. 24, no. 7, pp. 909–969, 2009. View at Scopus
  11. A. Armulik, G. Genové, and C. Betsholtz, “Pericytes: developmental, physiological, and pathological perspectives, problems, and promises,” Developmental Cell, vol. 21, no. 2, pp. 193–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Feng, A. Mantesso, C. De Bari, A. Nishiyama, and P. T. Sharp, “Dual origin of mesenchymal stem cells contributing to organ growth and repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 16, pp. 6503–6508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Tang, D. Zeve, J. M. Suh et al., “White fat progenitor cells reside in the adipose vasculature,” Science, vol. 322, no. 5901, pp. 583–586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. O. Traktuev, S. Merfeld-Clauss, J. Li et al., “A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks,” Circulation Research, vol. 102, no. 1, pp. 77–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Dellavalle, M. Sampaolesi, R. Tonlorenzi et al., “Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells,” Nature Cell Biology, vol. 9, no. 3, pp. 255–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. A. Ingram, L. E. Mead, D. B. Moore, W. Woodard, A. Fenoglio, and M. C. Yoder, “Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells,” Blood, vol. 105, no. 7, pp. 2783–2786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Naito, H. Kidoya, S. Sakimoto, T. Wakabayashi, and N. Takakura, “Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels,” The EMBO Journal, vol. 31, no. 4, pp. 842–855, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Hu, Z. Zhang, E. Torsney et al., “Abundant progenitor cells in the adventitia contribute to atheroscleroses of vein grafts in ApoE-deficient mice,” Journal of Clinical Investigation, vol. 113, no. 9, pp. 1258–1265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Campagnolo, D. Cesselli, A. Al Haj Zen et al., “Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential,” Circulation, vol. 121, no. 15, pp. 1735–1745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Corselli, C. W. Chen, B. Sun, et al., “The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells,” Stem Cells and Development, vol. 21, no. 8, pp. 1299–1308, 2012.
  22. U. Tigges, M. Komatsu, and W. B. Stallcup, “Adventitial pericyte progenitor/mesenchymal stem cells participate in the restenotic response to arterial injury,” Journal of Vascular Research, vol. 50, no. 2, pp. 134–144, 2013.
  23. E. Zengin, F. Chalajour, U. M. Gehling et al., “Vascular wall resident progenitor cells: a source for postnatal vasculogenesis,” Development, vol. 133, no. 8, pp. 1543–1551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Pasquinelli, P. L. Tazzari, C. Vaselli et al., “Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells,” Stem Cells, vol. 25, no. 7, pp. 1627–1634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Sainz, A. A. H. Zen, G. Caligiuri et al., “Isolation of “side population” progenitor cells from healthy arteries of adult mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 2, pp. 281–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Tang, A. Wang, F. Yuan, et al., “Differentiation of multipotent vascular stem cells contributes to vascular diseases,” Nature Communications, vol. 3, article 875, 2012.
  27. E. L. Ritman and A. Lerman, “The dynamic vasa vasorum,” Cardiovascular Research, vol. 75, no. 4, pp. 649–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. F. D. Kolodgie, H. K. Gold, A. P. Burke et al., “Intraplaque hemorrhage and progression of coronary atheroma,” The New England Journal of Medicine, vol. 349, no. 24, pp. 2316–2325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. C. Sluimer, F. D. Kolodgie, A. P. Bijnens et al., “Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions. Relevance of compromised structural integrity for intraplaque microvascular leakage,” Journal of the American College of Cardiology, vol. 53, no. 17, pp. 1517–1527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. J. Khatri, C. Johnson, R. Magid et al., “Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma,” Circulation, vol. 109, no. 4, pp. 520–525, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. A. C. Langheinrich, A. Michniewicz, D. G. Sedding et al., “Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E-/-/low-density lipoprotein-/- double knockout mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 2, pp. 347–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Tanaka, D. Nagata, Y. Hirata, Y. Tabata, R. Nagai, and M. Sata, “Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein E-deficient mice,” Atherosclerosis, vol. 215, no. 2, pp. 366–373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. H. M. Kwon, G. Sangiorgi, E. L. Ritman et al., “Adventitial vasa vasorum in balloon-injured coronary arteries: visualization and quantitation by a microscopic three-dimensional computed tomography technique,” Journal of the American College of Cardiology, vol. 32, no. 7, pp. 2072–2079, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Khurana, Z. Zhuang, S. Bhardwaj et al., “Angiogenesis-dependent and independent phases of intimal hyperplasia,” Circulation, vol. 110, no. 16, pp. 2436–2443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Gössl, D. Versari, L. O. Lerman et al., “Low vasa vasorum densities correlate with inflammation and subintimal thickening: potential role in location-Determination of atherogenesis,” Atherosclerosis, vol. 206, no. 2, pp. 362–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Rademakers, K. Douma, T. M. Hackeng, et al., “Plaque-associated vasa vasorum in aged apolipoprotein E-deficient mice exhibit proatherogenic functional features in vivo,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 2, pp. 249–256, 2013.
  37. K. J. Veerman, D. E. Venegas-Pino, Y. Shi, et al., “Hyperglycaemia is associated with impaired vasa vasorum neovascularization and accelerated atherosclerosis in apolipoprotein-E deficient mice,” Atherosclerosis, vol. 227, no. 2, pp. 250–258, 2013.
  38. E. Torsney, K. Mandal, A. Halliday, M. Jahangiri, and Q. Xu, “Characterisation of progenitor cells in human atherosclerotic vessels,” Atherosclerosis, vol. 191, no. 2, pp. 259–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. D. L. Jones and A. J. Wagers, “No place like home: anatomy and function of the stem cell niche,” Nature Reviews Molecular Cell Biology, vol. 9, no. 1, pp. 11–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. C. Kovacic and M. Boehm, “Resident vascular progenitor cells: an emerging role for non-terminally differentiated vessel-resident cells in vascular biology,” Stem Cell Research, vol. 2, no. 1, pp. 2–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Ergün, D. Tilki, and D. Klein, “Vascular wall as a reservoir for different types of stem and progenitor cells,” Antioxidants and Redox Signaling, vol. 15, no. 4, pp. 981–995, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. W. Majesky, X. R. Dong, V. Hoglund, G. Daum, and W. M. Mahoney Jr., “The adventitia: a progenitor cell niche for the vessel wall,” Cells Tissues Organs, vol. 195, no. 1-2, pp. 73–81, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Diaz-Flores, F. Valladares, R. Gutierrez, and H. Varela, “The role of the pericytes of the adventitial microcirculation in the arterial intimal thickening,” Histology and Histopathology, vol. 5, no. 2, pp. 145–153, 1990. View at Scopus
  44. Y. Chen, M. M. Wong, P. Campagnolo, et al., “Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 8, pp. 1844–151, 2013.
  45. M. K. Grudzinska, E. Kurzejamska, K. Bojakowski, et al., “Monocyte chemoattractant protein 1-mediated migration of mesenchymal stem cells is a source of intimal hyperplasia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 6, pp. 1271–1279, 2013.
  46. N.-M. Tigerstedt, H. Savolainen-Peltonen, S. Lehti, and P. Hayry, “Vascular cell kinetics in response to intimal injury ex vivo,” Journal of Vascular Research, vol. 47, no. 1, pp. 35–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Díaz-Flores Jr., J. F. Madrid, R. Gutiérrez, H. Varela, F. Valladares, and L. Díaz-Flores, “Cell contribution of vasa-vasorum to early arterial intimal thickening formation,” Histology and histopathology, vol. 22, no. 12, pp. 1379–1386, 2007. View at Scopus
  48. F. Vasuri, S. Fittipaldi, M. Buzzi, et al., “Nestin and WT1 expression in small-sized vasa vasorum from human normal arteries,” Histology and Histopathology, vol. 27, no. 9, pp. 1195–1202, 2012.
  49. D. von Tell, A. Armulik, and C. Betsholtz, “Pericytes and vascular stability,” Experimental Cell Research, vol. 312, no. 5, pp. 623–629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Klein, P. Weißhardt, V. Kleff, H. Jastrow, H. G. Jakob, and S. Ergün, “Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation,” PLoS ONE, vol. 6, no. 5, Article ID e20540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. R. K. Jain, A. V. Finn, F. D. Kolodgie, H. K. Gold, and R. Virmani, “Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization,” Nature Clinical Practice Cardiovascular Medicine, vol. 4, no. 9, pp. 491–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. K. S. Moulton, K. Vakili, D. Zurakowski et al., “Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4736–4741, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Drinane, J. Mollmark, L. Zagorchev et al., “The antiangiogenic activity of rPAI-123 inhibits vasa vasorum and growth of atherosclerotic plaque,” Circulation Research, vol. 104, no. 3, pp. 337–345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Mollmark, S. Ravi, B. Sun et al., “Antiangiogenic activity of rPAI-123 promotes vasa vasorum regression in hypercholesterolemic mice through a plasmin-dependent mechanism,” Circulation Research, vol. 108, no. 12, pp. 1419–1428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Aikawa and P. Libby, “Lipid lowering therapy in atherosclerosis,” Seminars in Vascular Medicine, vol. 4, no. 4, pp. 357–366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. H. F. Elewa, A. B. El-Remessy, P. R. Somanath, and S. C. Fagan, “Diverse effects of statins on angiogenesis: new therapeutic avenues,” Pharmacotherapy, vol. 30, no. 2, pp. 169–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. S. H. Wilson, J. Herrmann, L. O. Lerman et al., “Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering,” Circulation, vol. 105, no. 4, pp. 415–418, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Tian, S. Hu, Y. Sun, et al., “Vasa vasorum and plaque progression, and responses to atorvastatin in a rabbit model of atherosclerosis: contrast-enhanced ultrasound imaging and intravascular ultrasound study,” Heart, vol. 99, no. 1, pp. 48–54, 2013.
  59. Y. Ruzankina, C. Pinzon-Guzman, A. Asare et al., “Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss,” Cell Stem Cell, vol. 1, no. 1, pp. 113–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Day, G. Shefer, A. Shearer, and Z. Yablonka-Reuveni, “The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny,” Developmental Biology, vol. 340, no. 2, pp. 330–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. R. K. Jain, “Molecular regulation of vessel maturation,” Nature Medicine, vol. 9, no. 6, pp. 685–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Gaengel, G. Genové, A. Armulik, and C. Betsholtz, “Endothelial-mural cell signaling in vascular development and angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 5, pp. 630–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Asanome, J. Kawabe, M. Matsuki, et al., “Nerve growth factor stimulates regeneration of perivascular nerve, and induces the maturation of microvessels around the injured artery,” Biochemical and Biophysical Research Communications, vol. 443, no. 1, pp. 150–155, 2014.