About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 827265, 12 pages
http://dx.doi.org/10.1155/2014/827265
Review Article

Advanced Imaging for the Early Diagnosis of Local Recurrence Prostate Cancer after Radical Prostatectomy

1Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, 00161 Rome, Italy
2Department of Diagnostic and Molecular Imaging, Interventional Radiology, Nuclear Medicine and Radiation Therapy, University Hospital “Tor Vergata”, 00133 Rome, Italy
3Department of Radiological Sciences, Oncology and Pathology, Spencer-Lorillard Foundation, Sapienza University of Rome, 00161 Rome, Italy

Received 19 December 2013; Accepted 6 February 2014; Published 13 March 2014

Academic Editor: Giovanni Luca Gravina

Copyright © 2014 Valeria Panebianco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Cooperberg, J. M. Broering, and P. R. Carroll, “Time trends and local variation in primary treatment of localized prostate cancer,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1117–1123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Bill-Axelson, L. Holmberg, F. Filén et al., “Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial,” Journal of the National Cancer Institute, vol. 100, no. 16, pp. 1144–1154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Han, A. W. Partin, M. Zahurak, S. Piantadosi, J. I. Epstein, and P. C. Walsh, “Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer,” Journal of Urology, vol. 169, no. 2, pp. 517–523, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. G. D. Grossfeld, D. M. Stier, S. C. Flanders et al., “Use of second treatment following definitive local therapy for prostate cancer: data from the capsure database,” Journal of Urology, vol. 160, no. 4, pp. 1398–1404, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. Freedland, E. B. Humphreys, L. A. Mangold, M. Eisenberger, and A. W. Partin, “Time to prostate specific antigen recurrence after radical prostatectomy and risk of prostate cancer specific mortality,” Journal of Urology, vol. 176, no. 4, pp. 1404–1408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Heidenreich, G. Aus, M. Bolla, et al., “EAU guidelines on prostate cancer,” European Urology, vol. 53, no. 1, pp. 68–80, 2008. View at Publisher · View at Google Scholar
  7. R. Svatek, P. I. Karakiewicz, M. Shulman, J. Karam, P. Perrotte, and E. Benaim, “Pre-treatment nomogram for disease-specific survival of patients with chemotherapy-naive androgen independent prostate cancer,” European Urology, vol. 49, no. 4, pp. 666–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Association of Urology, Guidelines on Prostate Cancer, European Association of Urology, Arnhem, The Netherlands, 2012.
  9. S. G. Roberts, M. L. Blute, E. J. Bergstralh, J. M. Slezak, and H. Zincke, “PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer,” Mayo Clinic Proceedings, vol. 76, no. 6, pp. 576–581, 2001. View at Scopus
  10. R. A. Marks, M. O. Koch, A. Lopez-Beltran, R. Montironi, B. E. Juliar, and L. Cheng, “The relationship between the extent of surgical margin positivity and prostate specific antigen recurrence in radical prostatectomy specimens,” Human Pathology, vol. 38, no. 8, pp. 1207–1211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. J. Stephenson, P. T. Scardino, M. W. Kattan et al., “Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy,” Journal of Clinical Oncology, vol. 25, no. 15, pp. 2035–2041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Loblaw, D. S. Mendelson, J. A. Talcott, et al., “American society of clinical oncology recommendations for the initial hormonal management of androgen sensitive metastatic, recurrent, or progressive prostate cancer,” Journal of Clinical Oncology, vol. 22, no. 14, pp. 2927–2941, 2004. View at Publisher · View at Google Scholar
  13. A. K. Leventis, S. F. Shariat, and K. M. Slawin, “Local recurrence after radical prostatectomy: correlation of US features with prostatic fossa biopsy findings,” Radiology, vol. 219, no. 2, pp. 432–439, 2001. View at Scopus
  14. V. Scattoni, F. Montorsi, M. Picchio et al., “Diagnosis of local recurrence after radical prostatectomy,” BJU International, vol. 93, no. 5, pp. 680–688, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. D. Yeh, M. Imbriaco, S. M. Larson et al., “Detection of bony metastases of androgen-independent prostate cancer by PET-FDG,” Nuclear Medicine and Biology, vol. 23, no. 6, pp. 693–697, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. P. D. Shreve, H. B. Grossman, M. D. Gross, and R. L. Wahl, “Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose,” Radiology, vol. 199, no. 3, pp. 751–756, 1996. View at Scopus
  17. G. Sanz, J. E. Robles, M. Giménez et al., “Positron emission tomography with 18fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer,” BJU International, vol. 84, no. 9, pp. 1028–1031, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Jana and M. D. Blaufox, “Nuclear medicine studies of the prostate, testes, and bladder,” Seminars in Nuclear Medicine, vol. 36, no. 1, pp. 51–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Hara, N. Kosaka, and H. Kishi, “PET imaging of prostate cancer using carbon-11-choline,” Journal of Nuclear Medicine, vol. 39, no. 6, pp. 990–995, 1998. View at Scopus
  20. T. Hara, N. Kosaka, N. Shinoura, and T. Kondo, “PET imaging of brain tumor with [methyl-11C]choline,” Journal of Nuclear Medicine, vol. 38, no. 6, pp. 842–847, 1997. View at Scopus
  21. N. Khan, N. Oriuchi, H. Zhang et al., “A comparative study of 11C-choline PET and [18F]fluorodeoxyglucose PET in the evaluation of lung cancer,” Nuclear Medicine Communications, vol. 24, no. 4, pp. 359–366, 2003. View at Scopus
  22. M. Picchio, U. Treiber, A. J. Beer et al., “Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings,” Journal of Nuclear Medicine, vol. 47, no. 6, pp. 938–944, 2006. View at Scopus
  23. M. Picchio, C. Crivellaro, G. Giovacchini, L. Gianolu, and C. Messa, “PET-CT for treatment planning in prostate cancer,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 53, no. 2, pp. 245–268, 2009. View at Scopus
  24. C. Fuccio, D. Rubello, P. Castellucci, M. C. Marzola, and S. Fanti, “Choline PET/CT for prostate cancer: main clinical applications,” European Journal of Radiology, vol. 80, no. 2, pp. e50–e56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. R. García, M. Soler, M. A. Blanch et al., “PET/CT with11C-choline and18F-FDG in patients with elevated PSA after radical treatment of a prostate cancer,” Revista Espanola de Medicina Nuclear, vol. 28, no. 3, pp. 95–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Picchio, C. Messa, C. Landoni et al., “Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography,” Journal of Urology, vol. 169, no. 4, pp. 1337–1340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Scher, M. Seitz, W. Albinger et al., “Value of11C-choline PET and PET/CT in patients with suspected prostate cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 1, pp. 45–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Giovacchini, M. Picchio, E. Coradeschi et al., “Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 6, pp. 1065–1073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Rinnab, N. M. Blumstein, F. M. Mottaghy et al., “11C-choline positron-emission tomography/computed tomography and transrectal ultrasonography for staging localized prostate cancer,” BJU International, vol. 99, no. 6, pp. 1421–1426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Schiavina, V. Scattoni, P. Castellucci et al., “11C-Choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms,” European Urology, vol. 54, no. 2, pp. 392–401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Calabria, A. Chiaravalloti, M. Tavolozza, C. Ragano-Caracciolo, and O. Schillaci, “Evaluation of extraprostatic disease in the staging of prostate cancer by F-18 choline PET/CT: can PSA and PSA density help in patient selection?” Nuclear Medicine Communications, vol. 34, no. 8, pp. 733–740, 2013. View at Publisher · View at Google Scholar
  32. F. Fazio, M. Picchio, and C. Messa, “Is 11C-choline the most appropriate tracer for prostate cancer?: for,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 5, pp. 753–756, 2004. View at Scopus
  33. M. Heinisch, A. Dirisamer, W. Loidl et al., “Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/ml?” Molecular Imaging and Biology, vol. 8, no. 1, pp. 43–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Rinnab, F. M. Mottaghy, N. M. Blumstein et al., “Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer,” BJU International, vol. 100, no. 4, pp. 786–793, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Rinnab, J. Simon, R. E. Hautmann et al., “[11C]choline PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy,” World Journal of Urology, vol. 27, no. 5, pp. 619–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Castellucci, C. Fuccio, C. Nanni et al., “Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy,” Journal of Nuclear Medicine, vol. 50, no. 9, pp. 1394–1400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Castellucci, C. Fuccio, D. Rubello et al., “Is there a role for11C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml?” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 1, pp. 55–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Giovacchini, M. Picchio, V. Scattoni et al., “PSA doubling time for prediction of [11C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 6, pp. 1106–1116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Giovacchini, M. Picchio, A. Briganti et al., “[11C]Choline positron emission tomography/computerized tomography to restage prostate cancer cases with biochemical failure after radical prostatectomy and no disease evidence on conventional imaging,” Journal of Urology, vol. 184, no. 3, pp. 938–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Giovacchini, M. Picchio, E. Coradeschi et al., “Predictive factors of [11C]choline PET/CT in patients with biochemical failure after radical prostatectomy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 2, pp. 301–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. N. Reske, N. M. Blumstein, and G. Glatting, “[11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 1, pp. 9–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Oyama, T. R. Miller, F. Dehdashti et al., “11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse,” Journal of Nuclear Medicine, vol. 44, no. 4, pp. 549–555, 2003. View at Scopus
  43. E. Fricke, S. Machtens, M. Hofmann et al., “Positron emission tomography with11C-acetate and18F-FDG in prostate cancer patients,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 30, no. 4, pp. 607–611, 2003. View at Scopus
  44. J. Kotzerke, B. G. Volkmer, B. Neumaier, J. E. Gschwend, R. E. Hautmann, and S. N. Reske, “Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer,” European Journal of Nuclear Medicine, vol. 29, no. 10, pp. 1380–1384, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Albrecht, F. Buchegger, D. Soloviev et al., “11C-acetate PET in the early evaluation of prostate cancer recurrence,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 2, pp. 185–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Vees, F. Buchegger, S. Albrecht et al., “18F-choline and/or11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy,” BJU International, vol. 99, no. 6, pp. 1415–1420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Sandblom, J. Sörensen, N. Lundin, M. Häggman, and P. Malmström, “Positron emission tomography with c11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy,” Urology, vol. 67, no. 5, pp. 996–1000, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Even-Sapir, U. Metser, E. Mishani, G. Lievshitz, H. Lerman, and I. Leibovitch, “The detection of bone metastases in patients with high-risk prostate cancer: 99 mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F- Fluoride PET/CT,” Journal of Nuclear Medicine, vol. 47, no. 2, pp. 287–297, 2006. View at Scopus
  49. M. Cimitan, R. Bortolus, S. Morassut et al., “[18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 12, pp. 1387–1398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. B. J. Krause, M. Souvatzoglou, M. Tuncel et al., “The detection rate of [11C]Choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 1, pp. 18–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Winter, J. Uphoff, R. Henke, and F. Wawroschek, “First results of [C]choline PET/CT-guided secondary lymph node surgery in patients with PSA failure and single lymph node recurrence after radical retropubic prostatectomy,” Urologia Internationalis, vol. 84, no. 4, pp. 418–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Y. Wo, M. Chen, P. L. Nguyen et al., “Evaluating the combined effect of comorbidity and prostate-specific antigen kinetics on the risk of death in men after prostate-specific antigen recurrence,” Journal of Clinical Oncology, vol. 27, no. 35, pp. 6000–6005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. A. W. Partin, C. R. Pound, J. D. Pearson et al., “Evaluation of serum prostate-specific antigen velocity after radical prostatectomy to distinguish local recurrence from distant metastases,” Urology, vol. 43, no. 5, pp. 649–659, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. E. I. Benchikh, A. Fegoun, A. Villers et al., “PSA and follow-up after treatment of prostate cancer,” Progres en Urologie, vol. 18, no. 3, pp. 137–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. O. Schillaci, F. Calabria, M. Tavolozza et al., “Influence of PSA, PSA velocity and PSA doubling time on contrast-enhanced18F-choline PET/CT detection rate in patients with rising PSA after radical prostatectomy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 4, pp. 589–596, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Rybalov, A. J. Breeuwsma, A. M. Leliveld, J. Pruim, R. A. Dierckx, and I. J. de Jong, “Impact of total PSA, PSA doubling time and PSA velocity on detection rates of 11C-Choline positron emission tomography in recurrent prostate cancer,” World Journal of Urology, vol. 31, no. 2, pp. 319–323, 2013. View at Publisher · View at Google Scholar
  57. M. C. Marzola, S. Chondrogiannis, A. Ferretti, et al., “Role of 18F-choline PET/CT in biochemically relapsed prostate cancer after radical prostatectomy: correlation with trigger PSA, PSA velocity, PSA doubling time, and metastatic distribution,” Clinical Nuclear Medicine, vol. 38, no. 1, pp. e26–e32, 2013. View at Publisher · View at Google Scholar
  58. G. Treglia, L. Ceriani, R. Sadeghi, G. Giovacchini, and L. Giovanella, “Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis,” Clinical Chemistry and Laboratory Medicine, 2013. View at Publisher · View at Google Scholar
  59. D. Hausmann, L. K. Bittencourt, U. I. Attenberger, et al., “Diagnostic accuracy of 18F choline PET/CT using time-of-flight reconstruction algorithm in prostate cancer patients with biochemical recurrence,” Clinical Nuclear Medicine, vol. 39, no. 3, pp. e197–e201, 2014. View at Publisher · View at Google Scholar
  60. G. Giovacchini, M. Picchio, R. G. Parra et al., “Prostate-specific antigen velocity versus prostate-specific antigen doubling time for prediction of11C choline PET/CT in prostate cancer patients with biochemical failure after radical prostatectomy,” Clinical Nuclear Medicine, vol. 37, no. 4, pp. 325–331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Picchio, A. Briganti, S. Fanti et al., “The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer,” European Urology, vol. 59, no. 1, pp. 51–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Mamede, F. Ceci, P. Castellucci, et al., “The role of 11C-choline PET imaging in the early detection of recurrence in surgically treated prostate cancer patients with very low PSA level <0.5 ng/mL,” Clinical Nuclear Medicine, vol. 38, no. 9, pp. e342–e345, 2013.
  63. S. M. Schwarzenböck, J. Kurth, Ch. Gocke, T. Kuhnt, G. Hildebrandt, and B. J. Krause, “Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 40, supplement 1, pp. S28–S35, 2013.
  64. D. M. Somford, J. J. Fütterer, T. Hambrock, and J. O. Barentsz, “Diffusion and perfusion MR imaging of the prostate,” Magnetic Resonance Imaging Clinics of North America, vol. 16, no. 4, pp. 685–695, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Seitz, A. Shukla-Dave, A. Bjartell et al., “Functional magnetic resonance imaging in prostate cancer,” European Urology, vol. 55, no. 4, pp. 801–814, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. V. Knopp, F. L. Giesel, H. Marcos, H. Von Tengg-Kobligk, and P. Choyke, “Dynamic contrast-enhanced magnetic resonance imaging in oncology,” Topics in Magnetic Resonance Imaging, vol. 12, no. 4, pp. 301–308, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Fuchsjäger, O. Akin, A. Shukla-Dave, D. Pucar, and H. Hricak, “The role of MRI and MRSI in diagnosis, treatment selection, and post-treatment follow-up for prostate cancer,” Clinical Advances in Hematology and Oncology, vol. 7, no. 3, pp. 193–202, 2009. View at Scopus
  68. A. Sciarra, V. Panebianco, S. Salciccia, et al., “Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer,” European Urology, vol. 54, no. 3, pp. 589–600, 2008.
  69. A. Alfarone, V. Panebianco, O. Schillaci et al., “Comparative analysis of multiparametric magnetic resonance and PET-CT in the management of local recurrence after radical prostatectomy for prostate cancer,” Critical Reviews in Oncology/Hematology, vol. 84, no. 1, pp. 109–121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. W. Kluwer, Perez and Brady’s Principles and Practice of Radiation Oncology, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2007.
  71. E. Casciani, E. Polettini, E. Carmenini et al., “Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy,” American Journal of Roentgenology, vol. 190, no. 5, pp. 1187–1192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. V. Panebianco, F. Barchetti, A. Sciarra, et al., “Prostate cancer recurrence after radical prostatectomy: the role of 3-T diffusion imaging in multi-parametric magnetic resonance imaging,” European Radiology, vol. 23, no. 6, pp. 1745–1752, 2013.
  73. T. Sella, L. H. Schwartz, P. W. Swindle et al., “Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging,” Radiology, vol. 231, no. 2, pp. 379–385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Cirillo, M. Petracchini, L. Scotti et al., “Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging,” European Radiology, vol. 19, no. 3, pp. 761–769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Panebianco, A. Sciarra, D. Lisi et al., “Prostate cancer: 1HMRS-DCEMR at 3 T versus [(18)F]choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP),” European Journal of Radiology, vol. 81, no. 4, pp. 700–708, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. D. M. Somford, J. J. Fütterer, T. Hambrock, and J. O. Barentsz, “Diffusion and perfusion MR imaging of the prostate,” Magnetic Resonance Imaging Clinics of North America, vol. 16, no. 4, pp. 685–695, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. V. A. Morgan, S. F. Riches, S. Giles, D. Dearnaley, and N. M. DeSouza, “Diffusion-weighted MRI for locally recurrent prostate cancer after external beam radiotherapy,” American Journal of Roentgenology, vol. 198, no. 3, pp. 596–602, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Kilinç, O. G. Doluoglu, B. Sakman, et al., “The correlation between diffusion-weighted imaging an histopathological evaluation of 356 prostate biopsy sites in patients with prostatic diseases,” ISRN Urology, vol. 2012, Article ID 252846, 5 pages, 2012. View at Publisher · View at Google Scholar
  79. G. Giannarini, D. P. Nguyen, G. N. Thalmann, and H. C. Thoeny, “Diffusion-weighted magnetic resonance imaging detects local recurrence after radical prostatectomy: initial experience,” European Urology, vol. 61, no. 3, pp. 616–620, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. H. A. Vargas, C. Wassberg, O. Akin, and H. Hricak, “MR imaging of treated prostate cancer,” Radiology, vol. 262, no. 1, pp. 26–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. NCCN guidelines version 4 2013.
  82. T. Zilli, S. Jorcano, N. Peguret, et al., “Dose-adapted salvage radiotherapy after radical prostatectomy based on an erMRI target definition model: toxicity analysis,” Acta Oncologica, vol. 53, no. 1, pp. 96–102, 2014. View at Publisher · View at Google Scholar
  83. G. Bauman, M. Haider, U. A. Van der Heide, and M. Ménard, “Boosting imaging defined dominant prostatic tumors: a systematic review,” Radiotherapy & Oncology, vol. 107, no. 3, pp. 274–281, 2013. View at Publisher · View at Google Scholar
  84. V. Panebianco, F. Giove, F. Barchetti, F. Podo, and R. Passariello, “High-field PET/MRI and MRS: potential clinical and research applications,” Clinical and Translational Imaging, vol. 1, no. 1, pp. 17–29, 2013. View at Publisher · View at Google Scholar
  85. D. Thorwarth and S. Leibfarth, “Potential role of PET/MRI in radiotherapy treatment planning,” Clinical and Translational Imaging, vol. 1, no. 1, pp. 45–51, 2013. View at Publisher · View at Google Scholar