About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 852610, 10 pages
http://dx.doi.org/10.1155/2014/852610
Research Article

Calcium Phosphate Based Three-Dimensional Cold Plotted Bone Scaffolds for Critical Size Bone Defects

1Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
2Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
3AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
4Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Mauerstrasse 5, 52064 Aachen, Germany

Received 18 October 2013; Revised 13 January 2014; Accepted 13 January 2014; Published 26 February 2014

Academic Editor: Aaron W. James

Copyright © 2014 Christian J. D. Bergmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Arcos, I. Izquierdo-Barba, and M. Vallet-Regi, “Promising trends of bioceramics in the biomaterials field,” Journal of Materials Science, vol. 20, no. 2, pp. 447–455, 2009.
  2. M. C. von Doernberg, B. von Rechenberg, M. Bohner et al., “In vivo behavior of calcium phosphate scaffolds with four different pore sizes,” Biomaterials, vol. 27, no. 30, pp. 5186–5198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Lan Levengood, S. J. Polak, M. B. Wheeler et al., “Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration,” Biomaterials, vol. 31, no. 13, pp. 3552–3563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. Hing, B. Annaz, S. Saeed, P. A. Revell, and T. Buckland, “Microporosity enhances bioactivity of synthetic bone graft substitutes,” Journal of Materials Science, vol. 16, no. 5, pp. 467–475, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18, pp. 3413–3431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Giannatsis and V. Dedoussis, “Additive fabrication technologies applied to medicine and health care: a review,” International Journal of Advanced Manufacturing Technology, vol. 40, no. 1-2, pp. 116–127, 2009.
  7. W. Y. Yeong, C. K. Chua, K. F. Leong, and M. Chandrasekaran, “Rapid prototyping in tissue engineering: challenges and potential,” Trends in Biotechnology, vol. 22, no. 12, pp. 643–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K. H. Tan, C. K. Chua, K. F. Leong et al., “Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends,” Biomaterials, vol. 24, no. 18, pp. 3115–3123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. U. Klammert, U. Gbureck, E. Vorndran, J. Rödiger, P. Meyer-Marcotty, and A. C. Kübler, “3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects,” Journal of Cranio-Maxillofacial Surgery, vol. 38, no. 8, pp. 565–570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. Barralet, L. Grover, T. Gaunt, A. J. Wright, and I. R. Gibson, “Preparation of macroporous calcium phosphate cement tissue engineering scaffold,” Biomaterials, vol. 23, no. 15, pp. 3063–3072, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Bohner, “Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements,” Injury, vol. 31, supplement 4, pp. D37–D47, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. U. Deisinger, “Generating porous ceramic scaffolds: processing and properties,” Key Engineering Materials, vol. 441, pp. 155–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Detsch, F. Uhl, U. Deisinger, and G. Ziegler, “3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique,” Journal of Materials Science, vol. 19, no. 4, pp. 1491–1496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Hollister, “Porous scaffold design for tissue engineering,” Nature Materials, vol. 4, no. 7, pp. 518–524, 2005.
  15. D. W. Hutmacher, M. Sittinger, and M. V. Risbud, “Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems,” Trends in Biotechnology, vol. 22, no. 7, pp. 354–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. C. Ang, K. F. Leong, C. K. Chua, and M. Chandrasekaran, “Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures,” Rapid Prototyping Journal, vol. 12, no. 2, pp. 100–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. H. Too, K. F. Leong, C. K. Chua et al., “Investigation of 3D non-random porous structures by fused deposition modelling,” International Journal of Advanced Manufacturing Technology, vol. 19, no. 3, pp. 217–223, 2002. View at Scopus
  18. C. T. Wu, W. Fan, Y. H. Zhou, et al., “3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis,” Journal of Materials Chemistry, vol. 22, no. 24, pp. 12288–12295, 2012.
  19. M. Bohner and G. Baroud, “Injectability of calcium phosphate pastes,” Biomaterials, vol. 26, no. 13, pp. 1553–1563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Lewis, “Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review,” Journal of Biomedical Materials Research B, vol. 76, no. 2, pp. 456–468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Wang, J. Ye, and H. Wang, “Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material,” Journal of Biomedical Materials Research B, vol. 78, no. 2, pp. 259–264, 2006.
  22. G. Lewis, “Viscoelastic properties of injectable bone cements for orthopaedic applications: state-of-the-art review,” Journal of Biomedical Materials Research B, vol. 98, no. 1, pp. 171–191, 2011.
  23. A. Beck, D. Nehrbass, M. J. Stoddart, et al., “The use of Reamer Irrigator Aspirator (RIA) autograft harvest in the treatment of critical-sized iliac wing defects in sheep: investigation of dexamethasone and beta-tricalcium phosphate augmentation,” Bone, vol. 53, no. 2, pp. 554–565, 2013.
  24. M. L. Anderson, W. J. Dhert, J. D. de Bruijn et al., “Critical size defect in the goat's os ilium a model to evaluate bone grafts and substitutes,” Clinical Orthopaedics and Related Research, no. 364, pp. 231–239, 1999. View at Scopus
  25. T. Atsumi, Y. Miwa, K. Kimata, and Y. Ikawa, “A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells,” Cell Differentiation and Development, vol. 30, no. 2, pp. 109–116, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Saito, A. Fukai, A. Mabuchi, et al., “Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development,” Nature Medicine, vol. 16, no. 6, pp. 678–686, 2010.
  27. T. J. Welting, M. M. Caron, P. J. Emans et al., “Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification,” European cells and Materials, vol. 22, pp. 420–437, 2011. View at Scopus
  28. G. Kim, S. Ahn, H. Yoon, Y. Kim, and W. Chun, “A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering,” Journal of Materials Chemistry, vol. 19, no. 46, pp. 8817–8823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Xiong, Y. Yan, S. Wang, R. Zhang, and C. Zhang, “Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition,” Scripta Materialia, vol. 46, no. 11, pp. 771–776, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Y. Yang, X. P. Chi, S. Yang, and J. R. G. Evans, “Mechanical strength of extrusion freeformed calcium phosphate filaments,” Journal of Materials Science, vol. 21, no. 5, pp. 1503–1510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Y. Yang, I. Thompson, S. F. Yang, X. P. Chi, J. R. G. Evans, and R. J. Cook, “Dissolution characteristics of extrusion freeformed hydroxyapatite- tricalcium phosphate scaffolds,” Journal of Materials Science, vol. 19, no. 11, pp. 3345–3353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. I. Martin and P. W. Brown, “Phase equilibria among acid calcium phosphates,” Journal of the American Ceramic Society, vol. 80, no. 5, pp. 1263–1266, 1997. View at Scopus
  33. G. Vereecke and J. Lemaître, “Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO2-H2O,” Journal of Crystal Growth, vol. 104, no. 4, pp. 820–832, 1990. View at Scopus
  34. R. Z. LeGeros, “Calcium phosphate-based osteoinductive materials,” Chemical Reviews, vol. 108, no. 11, pp. 4742–4753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Follet, G. Boivin, C. Rumelhart, and P. J. Meunier, “The degree of mineralization is a determinant of bone strength: a study on human calcanei,” Bone, vol. 34, no. 5, pp. 783–789, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. U. Gbureck, T. Hölzel, C. J. Doillon, F. A. Müller, and J. E. Barralet, “Direct printing of bioceramic implants with spatially localized angiogenic factors,” Advanced Materials, vol. 19, no. 6, pp. 795–800, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Li, H. R. Ramay, K. D. Hauch, D. Xiao, and M. Zhang, “Chitosan-alginate hybrid scaffolds for bone tissue engineering,” Biomaterials, vol. 26, no. 18, pp. 3919–3928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. C. E. Wilson, J. D. de Bruijn, C. A. van Blitterswijk, A. J. Verbout, and W. J. A. Dhert, “Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research,” Journal of Biomedical Materials Research A, vol. 68, no. 1, pp. 123–132, 2004. View at Scopus
  39. M. Otsuka, Y. Nakahigashi, Y. Matsuda, J. L. Fox, and W. I. Higuchi, “A novel skeletal drug delivery system using self-setting calcium phosphate cement. 7. Effect of biological factors on indomethacin release from the cement loaded on bovine bone,” Journal of Pharmaceutical Sciences, vol. 83, no. 11, pp. 1569–1573, 1994. View at Publisher · View at Google Scholar · View at Scopus