About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 876712, 9 pages
Research Article

Modulation of c-Fos and BDNF Protein Expression in Pentylenetetrazole-Kindled Mice following the Treatment with Novel Antiepileptic Compound HHL-6

1H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
2Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

Received 15 April 2013; Revised 22 October 2013; Accepted 30 October 2013; Published 29 January 2014

Academic Editor: Graziano Onder

Copyright © 2014 Saima Mahmood Malhi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Brain-derived neurotrophic factor (BDNF) and c-Fos are shown to promote epileptogenesis and are taken as a marker of neuronal activity. The present study investigated the expression of BDNF and c-Fos in mice brain with pentylenetetrazol- (PTZ-) induced generalized seizure and evaluated the effect of novel tryptamine derivative HHL-6 on the expression of these two markers. The subconvulsive dose of PTZ (50 mg/kg) was administered on alternate days in the experimental groups until the seizure scores 4-5 developed in the PTZ-control group. At the end of each experiment, animals were sacrificed, brain samples were collected and cryosectioned, and immunohistochemical analysis of BDNF and c-Fos protein was performed. Data obtained from two sections per mouse ( animals/group) is presented as means ± S.E.M. The test compound HHL-6 demonstrated a potent anticonvulsant activity in the PTZ-induced seizure in mice. Significant reduction in the BDNF ( ) and c-Fos ( ) protein expression was observed in the HHL-6 treated group. Based on these results we suggest that one of the possible mechanisms of HHL-6 to inhibit epileptogenesis might be due to its controlling effect on the cellular and molecular expression of the factors that contribute to the development of epileptogenic plasticity in the CNS.