About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 876712, 9 pages
http://dx.doi.org/10.1155/2014/876712
Research Article

Modulation of c-Fos and BDNF Protein Expression in Pentylenetetrazole-Kindled Mice following the Treatment with Novel Antiepileptic Compound HHL-6

1H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
2Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

Received 15 April 2013; Revised 22 October 2013; Accepted 30 October 2013; Published 29 January 2014

Academic Editor: Graziano Onder

Copyright © 2014 Saima Mahmood Malhi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Fisher, W. Van Emde Boas, W. Blume et al., “Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE),” Epilepsia, vol. 46, no. 4, pp. 470–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. World Health Organization, Epilepsy: Epidemiology, Aetiology and Prognosis, number 165, WHO Factsheet, 2001.
  3. T. Sato, N. Yamada, K. Morimoto, S. Uemura, and S. Kuroda, “A behavioral and immunohistochemical study on the development of perirhinal cortical kindling: a comparison with other types of limbic kindling,” Brain Research, vol. 811, no. 1-2, pp. 122–132, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Li, H. Shen, C. C. G. Naus, L. Zhang, and P. L. Carlen, “Upregulation of gap junction connexin 32 with epileptiform activity in the isolated mouse hippocampus,” Neuroscience, vol. 105, no. 3, pp. 589–598, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Gorji, M. Madeja, H. Straub, R. Köhling, and E.-J. Speckmann, “Lowering of the potassium concentration induces epileptiform activity in guinea-pig hippocampal slices,” Brain Research, vol. 908, no. 2, pp. 130–139, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pitkänen and K. Lukasiuk, “Molecular and cellular basis of epileptogenesis in symptomatic epilepsy,” Epilepsy and Behavior, vol. 14, no. 1, pp. 16–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Löscher, “Current status and future directions in the pharmacotherapy of epilepsy,” Trends in Pharmacological Sciences, vol. 23, no. 3, pp. 113–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Pitkänen, I. Kharatishvili, H. Karhunen et al., “Epileptogenesis in experimental models,” Epilepsia, vol. 48, no. 2, pp. 13–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. K. Akula, A. Dhir, M. Bishnoi, and S. K. Kulkarni, “Effect of systemic administration of adenosine on brain adenosine levels in pentylenetetrazol-induced seizure threshold in mice,” Neuroscience Letters, vol. 425, no. 1, pp. 39–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Rattka, C. Brandt, M. Bankstahl, S. Bröer, and W. Löscher, “Enhanced susceptibility to the GABA antagonist pentylenetetrazole during the latent period following a pilocarpine-induced status epilepticus in rats,” Neuropharmacology, vol. 60, no. 2-3, pp. 505–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Sato, “Kindling: an experimental model of epilepsy,” Psychiatry and Clinical Neurosciences, vol. 36, no. 4, pp. 440–441, 1982.
  12. M. Sato, R. J. Racine, and D. C. McIntyre, “Kindling: basic mechanisms and clinical validity,” Electroencephalography and Clinical Neurophysiology, vol. 76, no. 5, pp. 459–472, 1990. View at Scopus
  13. A. Yoshii and M. Constantine-Paton, “Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease,” Developmental Neurobiology, vol. 70, no. 5, pp. 304–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ballarin, P. Ernfors, N. Lindefors, and H. Persson, “Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain,” Experimental Neurology, vol. 114, no. 1, pp. 35–43, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Lähteinen, A. Pitkänen, J. Knuuttila, P. Törönen, and E. Castrén, “Brain-derived neurotrophic factor signaling modifies hippocampal gene expression during epileptogenesis in transgenic mice,” European Journal of Neuroscience, vol. 19, no. 12, pp. 3245–3254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Larmet, S. Reibel, J. Carnahan, H. Nawa, C. Marescaux, and A. Depaulis, “Protective effects of brain-derived neurotrophic factor on the development of hippocampal kindling in the rat,” NeuroReport, vol. 6, no. 14, pp. 1937–1941, 1995. View at Scopus
  17. M. Simonato, R. Molteni, G. Bregola et al., “Different patterns of induction of FGF-2, FGF-1 and BDNF mRNAs during kindling epileptogenesis in the rat,” European Journal of Neuroscience, vol. 10, no. 3, pp. 955–963, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. D. G. Herrera and H. A. Robertson, “Activation of c-fos in the brain,” Progress in Neurobiology, vol. 50, no. 2-3, pp. 83–107, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Curran and J. I. Morgan, “Fos: an immediate-early transcription factor in neurons,” Journal of Neurobiology, vol. 26, no. 3, pp. 403–412, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Kovács, “c-Fos as a transcription factor: a stressful (re)view from a functional map,” Neurochemistry International, vol. 33, no. 4, pp. 287–297, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Sagar, F. R. Sharp, and T. Curran, “Expression of c-fos protein in brain: metabolic mapping at the cellular level,” Science, vol. 240, no. 4857, pp. 1328–1331, 1988. View at Scopus
  22. M. Dragunow and H. A. Robertson, “Localization and induction of c-fos protein-like immunoreactive material in the nuclei of adult mammalian neurons,” Brain Research, vol. 440, no. 2, pp. 252–260, 1988. View at Scopus
  23. M. Kiessling and P. Gass, “Immediate early gene expression in experimental epilepsy,” Brain Pathology, vol. 3, no. 4, pp. 381–393, 1993. View at Scopus
  24. Y. Iryo, M. Matsuoka, and H. Igisu, “Suppression of pentylenetetrazol-induced seizures and c-fos expression in mouse brain by L-carnitine,” Journal of Occupational Health, vol. 42, no. 3, pp. 119–123, 2000. View at Scopus
  25. C. Humpel, C. Wetmore, and L. Olson, “Regulation of brain-derived neurotrophic factor messenger RNA and protein at the cellular level in pentylenetetrazol-induced epileptic seizures,” Neuroscience, vol. 53, no. 4, pp. 909–918, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. R. J. Racine, “Modification of seizure activity by electrical stimulation: II. Motor seizure,” Electroencephalography and Clinical Neurophysiology, vol. 32, no. 3, pp. 281–294, 1972. View at Scopus
  27. R. Racine, L. Tuff, and J. Zaide, “Kindling, unit discharge patterns and neural plasticity,” Canadian Journal of Neurological Sciences, vol. 2, no. 4, pp. 395–405, 1975. View at Scopus
  28. C. L. Faingold, “Seizures induced by convulsant drugs,” in Neurotransmitters and Epilepsy, P. C. Jobes and H. E. Laird, Eds., pp. 215–276, Humana Press, 1987.
  29. S. N. Mandhane, K. Aavula, and T. Rajamannar, “Timed pentylenetetrazol infusion test: a comparative analysis with s.c.PTZ and MES models of anticonvulsant screening in mice,” Seizure, vol. 16, no. 7, pp. 636–644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. F. A. Oliveira, R. N. De Almeida, M. D. F. V. Sousa, J. M. Barbosa-Filho, S. A. Diniz, and I. A. De Medeiros, “Anticonvulsant properties of N-salicyloyltryptamine in mice,” Pharmacology Biochemistry and Behavior, vol. 68, no. 2, pp. 199–202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. F. D. A. Oliveira, D. A. E Silva, L. J. Quintans Jr. et al., “Synthesis and structural characterization of N-benzoyltryptamine and its new analogue N-salicyloyltryptamine, a potential anticonvulsant agent,” Journal of the Chilean Chemical Society, vol. 51, no. 2, pp. 919–922, 2006. View at Scopus
  32. H. Altintaş, Ö. Ateş, B. S. Uydeş-Doǧan et al., “Synthesis and evaluation of antimicrobial and anticonvulsant activities of some new 3-[2-(5-aryl-1,3,4-oxadiazol-2-yl/4-carbethoxymethylthiazol-2-yl)imino-4-thiazolidinon-5-ylidene]-5-substituted/nonsubstituted 1H-indole-2-ones and investigation of their structure-activity relationships,” Arzneimittel-Forschung, vol. 56, no. 3, pp. 239–248, 2006. View at Scopus
  33. K. Gale, “Role of GABA in the genesis of chemoconvulsant seizures,” Toxicology Letters, vol. 64-65, pp. 417–428, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. G. De Sarro, E. Palma, N. Costa et al., “Effects of compounds acting on GABA(B) receptors in the pentylenetetrazole kindling model of epilepsy in mice,” Neuropharmacology, vol. 39, no. 11, pp. 2147–2161, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. J. I. Morgan, D. R. Cohen, J. L. Hempstead, and T. Curran, “Mapping patterns of c-fos expression in the central nervous system after seizure,” Science, vol. 237, no. 4811, pp. 192–196, 1987. View at Scopus
  36. T. C. D. Burazin and A. L. Gundlach, “Rapid and transient increases in cellular immediate early gene and neuropeptide mRNAs in cortical and limbic areas after amygdaloid kindling seizures in the rat,” Epilepsy Research, vol. 26, no. 1, pp. 281–293, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. T. R. Mhyre and C. D. Applegate, “Persistent regional increases in brain-derived neurotrophic factor in the flurothyl model of epileptogenesis are dependent upon the kindling status of the animal,” Neuroscience, vol. 121, no. 4, pp. 1031–1045, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Clark, R. M. Post, S. R. B. Weiss, C. J. Cain, and T. Nakajima, “Regional expression of c-fos mRNA in rat brain during the evolution of amygdala kindled seizures,” Molecular Brain Research, vol. 11, no. 1, pp. 55–64, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. D. M. Labiner, L. S. Butler, Z. Cao, D. A. Hosford, C. Shin, and J. O. McNamara, “Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing,” Journal of Neuroscience, vol. 13, no. 2, pp. 744–751, 1993. View at Scopus
  40. M. Erdtmann-Vourliotis, U. Riechert, P. Mayer, G. Grecksch, and V. Höllt, “Pentylenetetrazole (PTZ)-induced c-fos expression in the hippocampus of kindled rats is suppressed by concomitant treatment with naloxone,” Brain Research, vol. 792, no. 2, pp. 299–308, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Giulia, V. Francesca, S. Sandra et al., “A molecular study of hippocampus in dogs with convulsion during canine distemper virus encephalitis,” Brain Research, vol. 1098, no. 1, pp. 186–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Szyndler, P. Maciejak, D. Turzyńska et al., “Mapping of c-Fos expression in the rat brain during the evolution of pentylenetetrazol-kindled seizures,” Epilepsy and Behavior, vol. 16, no. 2, pp. 216–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. G. M. Kasof, A. Mandelzys, S. D. Maika, R. E. Hammer, T. Curran, and J. I. Morgan, “Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats,” Journal of Neuroscience, vol. 15, no. 6, pp. 4238–4249, 1995. View at Scopus
  44. B. J. Chiasson, M. G. L. Hong, and H. A. Robertson, “Putative roles for the inducible transcription factor c-fos in the central nervous system: studies with antisense oligonucleotides,” Neurochemistry International, vol. 31, no. 3, pp. 459–475, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Nawa, J. Carnahan, and C. Call, “BDNF protein measured by a novel enzyme immunoassay in normal brain and after seizure: partial disagreement with mRNA levels,” European Journal of Neuroscience, vol. 7, no. 7, pp. 1527–1535, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Numakawa, S. Suzuki, E. Kumamaru, N. Adachi, M. Richards, and H. Kunugi, “BDNF function and intracellular signaling in neurons,” Histology and Histopathology, vol. 25, no. 2, pp. 237–258, 2010. View at Scopus
  47. D. K. Binder, S. D. Croll, C. M. Gall, and H. E. Scharfman, “BDNF and epilepsy: too much of a good thing?” Trends in Neurosciences, vol. 24, no. 1, pp. 47–53, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Wang, J.-S. Qi, S. Kong et al., “BDNF-TrkB signaling pathway mediates the induction of epileptiform activity induced by a convulsant drug cyclothiazide,” Neuropharmacology, vol. 57, no. 1, pp. 49–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Lindholm, E. Castren, M. Berzaghi, A. Blochl, and H. Thoenen, “Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain—implications for neuronal plasticity,” Journal of Neurobiology, vol. 25, no. 11, pp. 1362–1372, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Elmer, M. Kokaia, Z. Kokaia, I. Ferencz, and O. Lindvall, “Delayed kindling development after rapidly recurring seizures: relation to messy fiber sprouting and neurotrophin, GAP-43 and dynorphin gene expression,” Brain Research, vol. 712, no. 1, pp. 19–34, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. P. J. Isackson, M. M. Huntsman, K. D. Murray, and C. M. Gall, “BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF,” Neuron, vol. 6, no. 6, pp. 937–948, 1991. View at Publisher · View at Google Scholar · View at Scopus
  52. S. D. Croll, C. Suri, D. L. Compton et al., “Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex,” Neuroscience, vol. 93, no. 4, pp. 1491–1506, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Wetmore, L. Olson, and A. J. Bean, “Regulation of brain-derived neurotrophic factor (BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors,” Journal of Neuroscience, vol. 14, no. 3, pp. 1688–1700, 1994. View at Scopus
  54. W. Gottschalk, L. D. Pozzo-Miller, A. Figurov, and B. Lu, “Presynaptic modulation of synaptic transmission and plasticity by brain- derived neurotrophic factor in the developing hippocampus,” Journal of Neuroscience, vol. 18, no. 17, pp. 6830–6839, 1998. View at Scopus
  55. X.-P. He, L. Minichiello, R. Klein, and J. O. McNamara, “Immunohistochemical evidence of seizure-induced activation of trkB receptors in the mossy fiber pathway of adult mouse hippocampus,” Journal of Neuroscience, vol. 22, no. 17, pp. 7502–7508, 2002. View at Scopus
  56. P. Gass, M. Kiessling, and H. Bading, “Regionally selective stimulation of mitogen activated protein (MAP) kinase tyrosine phosphorylation after generalized seizures in the rat brain,” Neuroscience Letters, vol. 162, no. 1-2, pp. 39–42, 1993. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Herdegen, A. Blume, T. Buschmann et al., “Expression of activating transcription factor-2, serum response factor and camp/ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation,” Neuroscience, vol. 81, no. 1, pp. 199–212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Heinrich, S. Lähteinen, F. Suzuki et al., “Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy,” Neurobiology of Disease, vol. 42, no. 1, pp. 35–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Kokaia, P. Ernfors, Z. Kokaia, E. Elmer, R. Jaenisch, and O. Lindvall, “Suppressed epileptogenesis in BDNF mutant mice,” Experimental Neurology, vol. 133, no. 2, pp. 215–224, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Lähteinen, A. Pitkänen, T. Saarelainen, J. Nissinen, E. Koponen, and E. Castrén, “Decreased BDNF signalling in transgenic mice reduces epileptogenesis,” European Journal of Neuroscience, vol. 15, no. 4, pp. 721–734, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Frank, R. Ventimiglia, K. Anderson, R. M. Lindsay, and J. S. Rudge, “BDNF down-regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons,” European Journal of Neuroscience, vol. 8, no. 6, pp. 1220–1230, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. M. T. Sommerfeld, R. Schweigreiter, Y.-A. Barde, and E. Hoppe, “Down-regulation of the neurotrophin receptor TrkB following ligand binding: evidence for an involvement of the proteasome and differential regulation of TrkA and TrkB,” Journal of Biological Chemistry, vol. 275, no. 12, pp. 8982–8990, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. X.-P. He, R. Kotloski, S. Nef, B. W. Luikart, L. F. Parada, and J. O. McNamara, “Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model,” Neuron, vol. 43, no. 1, pp. 31–42, 2004. View at Publisher · View at Google Scholar · View at Scopus