About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 901617, 15 pages
http://dx.doi.org/10.1155/2014/901617
Research Article

Synthesis and Gene Silencing Properties of siRNAs Containing Terminal Amide Linkages

1Dipartimento Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
2Dipartimento di Chimica Farmaceutica e Tossicologica, Università “Federico II,” Via D. Montesano 49, 80131 Napoli, Italy

Received 10 December 2013; Accepted 23 January 2014; Published 26 March 2014

Academic Editor: Daniela De Stefano

Copyright © 2014 Maria Gaglione et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells,” Nature, vol. 411, no. 6836, pp. 494–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. N. J. Caplen, S. Parrish, F. Imani, A. Fire, and R. A. Morgan, “Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9742–9747, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. N. C. Lau, L. P. Lim, E. G. Weinstein, and D. P. Bartel, “An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 858–862, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Weitzer and J. Martinez, “The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs,” Nature, vol. 447, no. 7141, pp. 222–226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. S. Schwarz, G. Hutvágner, T. Du, Z. Xu, N. Aronin, and P. D. Zamore, “Asymmetry in the assembly of the RNAi enzyme complex,” Cell, vol. 115, no. 2, pp. 199–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. F. Leuschner, S. L. Ameres, S. Kueng, and J. Martinez, “Cleavage of the siRNA passenger strand during RISC assembly in human cells,” EMBO Reports, vol. 7, no. 3, pp. 314–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J.-B. Ma, K. Ye, and D. J. Patel, “Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain,” Nature, vol. 429, no. 6989, pp. 318–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Elkayam, C. D. Kuhn, A. Tocilj et al., “The structure of human argonaute-2 in complex with miR-20a,” Cell, vol. 150, no. 1, pp. 100–110, 2012.
  10. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Berkhout and K.-T. Jeang, “MicroRNAs in viral gene regulation,” Biochimica et Biophysica Acta. Gene Regulatory Mechanisms, vol. 1809, no. 11-12, p. 587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Russo and N. Potenza, “Antiviral effects of human microRNAs and conservation of their target sites,” FEBS Letters, vol. 585, no. 16, pp. 2551–2555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. R. Corey, “Chemical modification: the key to clinical application of RNA interference?” Journal of Clinical Investigation, vol. 117, no. 12, pp. 3615–3622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. T. Crooke, “Progress in antisense technology,” Annual Review of Medicine, vol. 55, pp. 61–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Gaglione and A. Messere, “Recent progress in chemically modified siRNAs,” Mini Reviews in Medicinal Chemistry, vol. 10, no. 7, pp. 578–595, 2010. View at Scopus
  16. A. Lingel, B. Simon, E. Izaurralde, and M. Sattler, “Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain,” Nature Structural and Molecular Biology, vol. 11, no. 6, pp. 576–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Shah and S. H. Friedman, “Tolerance of RNA interference toward modifications of the 5′ antisense phosphate of small interfering RNA,” Oligonucleotides, vol. 17, no. 1, pp. 35–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-B. Ma, Y.-R. Yuan, G. Meister, Y. Pei, T. Tuschl, and D. J. Patel, “Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein,” Nature, vol. 434, no. 7033, pp. 666–670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Egholm, P. E. Nielsen, O. Buchardt, and R. H. Berg, “Recognition of guanine and adenine in DNA by cytosine and thymine containing peptide nucleic acids (PNA),” Journal of the American Chemical Society, vol. 114, no. 24, pp. 9677–9678, 1992.
  20. B. Hyrup and P. E. Nielsen, “Peptide nucleic acids (PNA): synthesis, properties and potential applications,” Bioorganic and Medicinal Chemistry, vol. 4, no. 1, pp. 5–23, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Komiyama, S. Ye, X. Liang et al., “PNA for one-base differentiating protection of DNA from nuclease and its use for SNPs detection,” Journal of the American Chemical Society, vol. 125, no. 13, pp. 3758–3762, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Uhlmann, A. Peyman, G. Breipohl, and D. W. Will, “PNA: Synthetic polyamide nucleic acids with unusual binding properties,” Angewandte Chemie. International Edition, vol. 37, no. 20, pp. 2797–2823, 1998. View at Scopus
  23. E. Uhlmann, “Peptide nucleic acids (PNA) and PNA-DNA chimeras: from high binding affinity towards biological function,” Biological Chemistry, vol. 379, no. 8-9, pp. 1045–1052, 1998. View at Scopus
  24. D. Capasso, L. de Napoli, G. di Fabio et al., “Solid phase synthesis of DNA-3′-PNA chimeras by using Bhoc/Fmoc PNA monomers,” Tetrahedron, vol. 57, no. 46, pp. 9481–9486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Esposito, A. Randazzo, A. Messere et al., “Synthesis and structural characterization of PNA-DNA quadruplex-forming chimeras,” European Journal of Organic Chemistry, no. 17, pp. 3364–3371, 2003. View at Scopus
  26. L. Petraccone, E. Erra, A. Messere et al., “Targeting duplex DNA with DNA-PNA chimeras? Physico-chemical characterisation of a triplex DNA-PNA/DNA/DNA,” Biopolymers, vol. 73, no. 4, pp. 434–442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Potenza, L. Moggio, G. Milano et al., “RNA interference in mammalia cells by RNA-3′-PNA chimeras,” International Journal of Molecular Sciences, vol. 9, no. 3, pp. 299–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Finotti, M. Borgatti, V. Bezzerri, et al., “Effects of decoy molecules targeting NFkappaB transcription factors in cystic fibrosis IB3-1 cells: recruitment of NFkappaB to the IL-8 gene promoter and transcription of the IL-8 gene,” Artificial DNA: PNA & XNA, vol. 2, no. 3, pp. 97–104, 2012.
  29. A. Zannetti, S. del Vecchio, A. Romanelli et al., “Inhibition of Sp1 activity by a decoy PNA-DNA chimera prevents urokinase receptor expression and migration of breast cancer cells,” Biochemical Pharmacology, vol. 70, no. 9, pp. 1277–1287, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Borgatti, A. Romanelli, M. Saviano et al., “Resistance of decoy PNA-DNA chimeras to enzymatic degradation in cellular extracts and serum,” Oncology Research, vol. 13, no. 5, pp. 279–287, 2002. View at Scopus
  31. A. Romanelli, C. Pedone, M. Saviano et al., “Molecular interactions between nuclear factor κB (NF-κB) transcription factors and a PNA-DNA chimera mimicking NF-κB binding sites,” European Journal of Biochemistry, vol. 268, no. 23, pp. 6066–6075, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. Y.-L. Chiu, A. Ali, C.-Y. Chu, H. Cao, and T. M. Rana, “Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells,” Chemistry and Biology, vol. 11, no. 8, pp. 1165–1175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Gong and J. P. Desaulniers, “Gene-silencing properties of siRNAs that contain internal amide-bond linkages,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 22, pp. 6934–6937, 2012.
  34. J. J. Turner, S. Jones, M. M. Fabani, G. Ivanova, A. A. Arzumanov, and M. J. Gait, “RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA,” Blood Cells, Molecules, and Diseases, vol. 38, no. 1, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Breipohl, D. W. Will, A. Peyman, and E. Uhlmann, “Novel synthetic routes to PNA monomers and PNA-DNA linker molecules,” Tetrahedron, vol. 53, no. 43, pp. 14671–14686, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Guzaev, H. Salo, A. Azhayev, and H. Lonnberg, “A new approach for chemical phosphorylation of oligonucleotides at the 5′-terminus,” Tetrahedron, vol. 51, no. 34, pp. 9375–9384, 1995. View at Scopus
  37. R. Huey, G. M. Morris, A. J. Olson, and D. S. Goodsell, “A semiempirical free energy force field with charge-based desolvation,” Journal of Computational Chemistry, vol. 28, no. 6, pp. 1145–1152, 2007.
  38. S. Cosconati, S. Forli, A. L. Perryman, R. Harris, D. S. Goodsell, and A. J. Olson, “Virtual screening with AutoDock: theory and practice,” Expert Opinion on Drug Discovery, vol. 5, no. 6, pp. 597–607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Sano, M. Sierant, M. Miyagishi, M. Nakanishi, Y. Takagi, and S. Sutou, “Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection,” Nucleic Acids Research, vol. 36, no. 18, pp. 5812–5821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Ueno, Y. Watanabe, A. Shibata et al., “Synthesis of nuclease-resistant siRNAs possessing universal overhangs,” Bioorganic and Medicinal Chemistry, vol. 17, no. 5, pp. 1974–1981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Á. Somoza, M. Terrazas, and R. Eritja, “Modified siRNAs for the study of the PAZ domain,” Chemical Communications, vol. 46, no. 24, pp. 4270–4272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Yoshikawa, A. Ogata, C. Matsuda et al., “Incorporation of biaryl units into the 5′ and 3′ ends of sense and antisense strands of siRNA duplexes improves strand selectivity and nuclease resistance,” Bioconjugate Chemistry, vol. 22, no. 1, pp. 42–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Gaglione, N. Potenza, G. di Fabio, et al., “Tuning RNA interference by enhancing siRNA/PAZ recognition,” ACS Medicinal Chemistry Letters, vol. 4, pp. 75–78, 2013.
  45. A. Boutla, C. Delidakis, I. Livadaras, M. Tsagris, and M. Tabler, “Short 5′-phosphorylated double-stranded RNAs induce RNA interference in Drosophila,” Current Biology, vol. 11, no. 22, pp. 1776–1780, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. D. S. Schwarz, G. Hutvágner, B. Haley, and P. D. Zamore, “Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways,” Molecular Cell, vol. 10, no. 3, pp. 537–548, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Boland, F. Tritschler, S. Heimstädt, E. Izaurralde, and O. Weichenrieder, “Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein,” EMBO Reports, vol. 11, no. 7, pp. 522–527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Boland, E. Huntzinger, S. Schmidt, E. Izaurralde, and O. Weichenrieder, “Crystal structure of the MID-PIWI lobe of a eukaryotic argonaute protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 26, pp. 10466–10471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Frank, N. Sonenberg, and B. Nagar, “Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2,” Nature, vol. 465, no. 7299, pp. 818–822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. S. Parker, S. M. Roe, and D. Barford, “Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex,” Nature, vol. 434, no. 7033, pp. 663–666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. Y.-L. Chiu and T. M. Rana, “siRNA function in RNAi: a chemical modification analysis,” RNA, vol. 9, no. 9, pp. 1034–1048, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. T. P. Prakash, C. R. Allerson, P. Dande et al., “Positional effect of chemical modifications on short interference RNA activity in mammalian cells,” Journal of Medicinal Chemistry, vol. 48, no. 13, pp. 4247–4253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. J. K. Watts, N. Choubdar, K. Sadalapure et al., “2′-Fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity,” Nucleic Acids Research, vol. 35, no. 5, pp. 1441–1451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Peacock, A. Kannan, P. A. Beal, and C. J. Burrows, “Chemical modification of siRNA bases to probe and enhance RNA interference,” Journal of Organic Chemistry, vol. 76, no. 18, pp. 7295–7300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. D. M. Kenski, A. J. Cooper, J. J. Li et al., “Analysis of acyclic nucleoside modifications in siRNAs finds sensitivity at position 1 that is restored by 5′-terminal phosphorylation both in vitro and in vivo,” Nucleic Acids Research, vol. 38, no. 2, pp. 660–671, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. Q. Xu, D. Katkevica, and E. Rozners, “Toward amide-modified RNA: synthesis of 3′-aminomethyl-5′- carboxy-3′,5′-dideoxy nucleosides,” Journal of Organic Chemistry, vol. 71, no. 16, pp. 5906–5913, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. D. R. Corey, “RNA learns from antisense,” Nature Chemical Biology, vol. 3, no. 1, pp. 8–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Gong and J.-P. Desaulniers, “Synthesis and properties of rnas that contain a PNA-RNA dimer,” Nucleosides, Nucleotides and Nucleic Acids, vol. 31, no. 5, pp. 389–400, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Selvam, S. Thomas, J. Abbott, S. D. Kennedy, and E. Rozners, “Amides as excellent mimics of phosphate linkages in RNA,” Angewandte Chemie. International Edition, vol. 50, no. 9, pp. 2068–2070, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. P. S. Pallan, P. von Matt, C. J. Wilds, K.-H. Altmann, and M. Egli, “RNA-binding affinities and crystal structure of oligonucleotides containing five-atom amide-based backbone structures,” Biochemistry, vol. 45, no. 26, pp. 8048–8057, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. T. K. Chakraborty, P. K. Gajula, and D. Koley, “Studies directed toward the development of amide-linked RNA mimics: synthesis of the monomeric building blocks,” Journal of Organic Chemistry, vol. 73, no. 17, pp. 6916–6919, 2008. View at Publisher · View at Google Scholar · View at Scopus