About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 902782, 9 pages
http://dx.doi.org/10.1155/2014/902782
Research Article

Anti-CD133 Antibody Immobilized on the Surface of Stents Enhances Endothelialization

1Department of Cardiology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao Shandong 266003, China
2Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Received 15 November 2013; Revised 9 January 2014; Accepted 12 January 2014; Published 10 March 2014

Academic Editor: Steve Ramcharitar

Copyright © 2014 Jian Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Sousa, M. A. Costa, A. G. M. R. Sousa et al., “Two-year angiographic and intravascular ultrasound follow-up after implantation of sirolimus-eluting stents in human coronary arteries,” Circulation, vol. 107, no. 3, pp. 381–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. W. Stone, S. G. Ellis, D. A. Cox et al., “A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease,” The New England Journal of Medicine, vol. 350, no. 3, pp. 221–231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. W. Serruvs, M.-C. Morice, A. P. Kappetein et al., “Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease,” The New England Journal of Medicine, vol. 360, no. 10, pp. 961–972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Shen, F. R. Gong, W. J. Tian, et al., “Anti-inammatory effect of arenic trioide eluting stent in a porcine coronary model,” BioMed Research International, vol. 2013, Article ID 937936, 9 pages, 2013. View at Publisher · View at Google Scholar
  5. J.-I. Kotani, M. Awata, S. Nanto et al., “Incomplete neointimal coverage of sirolimus-eluting stents. Angioscopic findings,” Journal of the American College of Cardiology, vol. 47, no. 10, pp. 2108–2111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. J. Wilson, G. Nakazawa, R. S. Schwartz et al., “Comparison of inflammatory response after implantation of sirolimus- and paclitaxel-eluting stents in porcine coronary arteries,” Circulation, vol. 120, no. 2, pp. 141–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. Hofma, W. J. van der Giessen, B. M. van Dalen et al., “Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation,” European Heart Journal, vol. 27, no. 2, pp. 166–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. V. Finn, M. Joner, G. Nakazawa et al., “Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization,” Circulation, vol. 115, no. 18, pp. 2435–2441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Gong, X. Cheng, S. Wang, Y. Zhao, Y. Gao, and H. Cai, “Heparin-immobilized polymers as non-inflammatory and non-thrombogenic coating materials for arsenic trioxide eluting stents,” Acta Biomaterialia, vol. 6, no. 2, pp. 534–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. Robinson, G. Roubin, S. King, R. Siegel, G. Rodgers, and R. P. Apkarian, “Correlated microscopic observations of arterial responses to intravascular stenting,” Scanning Microscopy, vol. 3, no. 2, pp. 665–679, 1989. View at Scopus
  11. S. Banerjee, E. Brilakis, S. Zhang et al., “Endothelial progenitor cell mobilization after percutaneous coronary intervention,” Atherosclerosis, vol. 189, no. 1, pp. 70–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Shirota, H. Yasui, H. Shimokawa, and T. Matsuda, “Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue,” Biomaterials, vol. 24, no. 13, pp. 2295–2302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Co, E. Tay, C. H. Lee et al., “Use of endothelial progenitor cell capture stent (Genous Bio-Engineered R Stent) during primary percutaneous coronary intervention in acute myocardial infarction: intermediate- to long-term clinical follow-up,” The American Heart Journal, vol. 155, no. 1, pp. 128–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Aoki, P. W. Serruys, H. van Beusekom et al., “Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First in Man) registry,” Journal of the American College of Cardiology, vol. 45, no. 10, pp. 1574–1579, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Larsen, C. Cheng, D. Tempel et al., “Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model,” European Heart Journal, vol. 33, no. 1, pp. 120–128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. M. Beijk, M. Klomp, N. J. W. Verouden et al., “Genous endothelial progenitor cell capturing stent vs. the Taxus Liberté stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study,” European Heart Journal, vol. 31, no. 9, pp. 1055–1064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. M. Beijk, M. Klomp, N. Van Geloven et al., “Two-year follow-up of the genous endothelial progenitor cell capturing stent versus the taxus libert stent in patients with de Novo coronary artery lesions with a high-risk of restenosis: a randomized, single-center, pilot study,” Catheterization and Cardiovascular Interventions, vol. 78, no. 2, pp. 189–195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Sedaghat, J. M. Sinning, K. Paul, et al., “First in vitro and in vivo results of an anti-human CD133-antibody coated coronary stent in the porcine model,” Clinical Research in Cardiology, vol. 102, no. 6, pp. 413–425, 2013.
  19. T. F. Al-Azemi and K. S. Bisht, “Novel functional polycarbonate by lipase-catalyzed ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-l,3-dioxan-2-one,” Macromolecules, vol. 32, no. 20, pp. 6536–6540, 1999. View at Scopus
  20. E. Juliane, K. Stefanie, J. Gergely, et al., “Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood,” Cardiovascular Research, vol. 58, pp. 478–486, 2003.
  21. S. Meng, Z. Liu, L. Shen et al., “The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system,” Biomaterials, vol. 30, no. 12, pp. 2276–2283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Thorin, “Influence of nitric oxide synthase inhibition and endothelin-1 receptor blockade on acetylcholine-induced coronary artery contraction in vitro in dilated and ischemic cardiomyopathies,” Journal of Cardiovascular Pharmacology, vol. 38, no. 1, pp. 90–98, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. W. Kim, H. S. Seo, J. H. Park et al., “A prospective, randomized, 6-month comparison of the coronary vasomotor response associated with a zotarolimus versus a sirolimus-eluting stent. Differential recovery of coronary endothelial dysfunction,” Journal of the American College of Cardiology, vol. 53, no. 18, pp. 1653–1659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. K. den Dekker, J. H. Houtgraaf, Y. Onuma et al., “Final results of the HEALING IIB trial to evaluate a bio-engineered CD34 antibody coated stent (GenousStent) designed to promote vascular healing by capture of circulating endothelial progenitor cells in CAD patients,” Atherosclerosis, vol. 219, no. 1, pp. 245–252, 2011. View at Publisher · View at Google Scholar · View at Scopus