About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 916542, 12 pages
http://dx.doi.org/10.1155/2014/916542
Review Article

Estimating Glomerular Filtration Rate in Older People

1Unit of Geriatric Pharmacoepidemiology, Italian National Research Center on Aging (INRCA), C. da Muoio Piccolo, 87100 Cosenza, Italy
2Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
3Department of Cell Biology, University of Calabria, 87036 Rende, Italy
4Department of Geriatric Rehabilitation, University-Hospital of Parma and Section of Geriatrics, Department of Clinical and Experimental Medicine, University of Parma, 43100 Parma, Italy
5Unit of Clinical Pathology, Italian National Research Center on Aging (INRCA), 87100 Cosenza, Italy
6Scientific Direction, Italian National Research Center on Aging (INRCA), 60127 Ancona, Italy

Received 23 December 2013; Accepted 15 February 2014; Published 20 March 2014

Academic Editor: Giuseppe Passarino

Copyright © 2014 Sabrina Garasto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Astor, K. Matsushita, R. T. Gansevoort et al., “Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts,” Kidney International, vol. 79, no. 12, pp. 1331–1340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. “K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification,” The American Journal of Kidney Diseases, vol. 39, pp. S1–S266, 2002.
  3. P. E. Stevens, D. J. O'Donoghue, S. De Lusignan et al., “Chronic kidney disease management in the United Kingdom: NEOERICA project results,” Kidney International, vol. 72, no. 1, pp. 92–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Cirillo, M. Laurenzi, M. Mancini, A. Zanchetti, C. Lombardi, and N. G. De Santo, “Low glomerular filtration in the population: prevalence, associated disorders, and awareness,” Kidney International, vol. 70, no. 4, pp. 800–806, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Gambaro, T. Yabarek, M. S. Graziani et al., “Prevalence of CKD in Northeastern Italy: results of the INCIPE study and comparison with NHANES,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 11, pp. 1946–1953, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Coresh, B. C. Astor, T. Greene, G. Eknoyan, and A. S. Levey, “Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third National Health and Nutrition Examination Survey,” The American Journal of Kidney Diseases, vol. 41, no. 1, pp. 1–12, 2003. View at Scopus
  7. J. Coresh, E. Selvin, L. A. Stevens et al., “Prevalence of chronic kidney disease in the United States,” Journal of the American Medical Association, vol. 298, no. 17, pp. 2038–2047, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. S. Fox, M. G. Larson, E. P. Leip, B. Culleton, P. W. F. Wilson, and D. Levy, “Predictors of new-onset kidney disease in a community-based population,” Journal of the American Medical Association, vol. 291, no. 7, pp. 844–850, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. C. Plantinga, K. Johansen, D. C. Crews et al., “Association of CKD with disability in the United States,” The American Journal of Kidney Diseases, vol. 57, no. 2, pp. 212–227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. X. Garg, P. G. Blake, W. F. Clark, C. M. Clase, R. B. Haynes, and L. M. Moist, “Association between renal insufficiency and malnutrition in older adults: results from the NHANES III,” Kidney International, vol. 60, no. 5, pp. 1867–1874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C.-Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. B. T. Workeneh and W. E. Mitch, “Review of muscle wasting associated with chronic kidney disease,” The American Journal of Clinical Nutrition, vol. 91, no. 4, pp. 1128S–1132S, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Aucella, C. C. Guida, V. Lauriola, and M. Vergura, “How to assess renal function in the geriatric population,” Journal of Nephrology, vol. 23, supplement 15, pp. S46–S54, 2010. View at Scopus
  14. L. H. Beck, “Changes in renal function with changing,” Clinics in Geriatric Medicine, vol. 14, no. 2, pp. 199–209, 1998. View at Scopus
  15. D. Miletic, Z. Fuckar, A. Sustic, V. Mozetic, D. Stimac, and G. Zauhar, “Sonographic measurement of absolute and relative renal length in adults,” Journal of Clinical Ultrasound, vol. 26, pp. 185–189, 1998.
  16. G. Fuiano, S. Sund, G. Mazza et al., “Renal hemodynamic response to maximal vasodilating stimulus in healthy older subjects,” Kidney International, vol. 59, no. 3, pp. 1052–1058, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Melk and P. F. Halloran, “Cell senescence and its implications for nephrology,” Journal of the American Society of Nephrology, vol. 12, no. 2, pp. 385–393, 2001. View at Scopus
  18. J. Neugarten, G. Gallo, S. Silbiger, and B. Kasiske, “Glomerulosclerosis in aging humans is not influenced by gender,” The American Journal of Kidney Diseases, vol. 34, no. 5, pp. 884–888, 1999. View at Scopus
  19. C. G. Musso and D. G. Oreopoulos, “Aging and physiological changes of the kidneys including changes in glomerular filtration rate,” Nephron, vol. 119, supplement 1, pp. p1–p5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. F. Davies and N. W. Shock, “Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males,” The Journal of Clinical Investigation, vol. 29, no. 5, pp. 496–507, 1950. View at Scopus
  21. D. Fliser, E. Franek, M. Joest, S. Block, E. Mutschler, and E. Ritz, “Renal function in the elderly: impact of hypertension and cardiac function,” Kidney International, vol. 51, no. 4, pp. 1196–1204, 1997. View at Scopus
  22. N. K. Hollenberg, A. Rivera, T. Meinking et al., “Age, renal perfusion and function in island-dwelling indigenous Kuna Amerinds of Panama,” Nephron, vol. 82, no. 2, pp. 131–138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Fliser and E. Ritz, “Serum cystatin C concentration as a marker of renal dysfunction in the elderly,” The American Journal of Kidney Diseases, vol. 37, no. 1, pp. 79–83, 2001. View at Scopus
  24. R. D. Lindeman, J. Tobin, and N. W. Shock, “Longitudinal studies on the rate of decline in renal function with age,” Journal of the American Geriatrics Society, vol. 33, no. 4, pp. 278–285, 1985. View at Scopus
  25. A. Corsonello, C. Pedone, F. Corica et al., “Concealed renal failure and adverse drug reactions in older patients with type 2 diabetes mellitus,” Journals of Gerontology A, vol. 60, no. 9, pp. 1147–1151, 2005. View at Scopus
  26. C. L. Meuwese and J. J. Carrero, “Chronic kidney disease and hypothalamic-pituitary axis dysfunction: the chicken or the egg?” Archives of Medical Research, vol. 44, pp. 591–600, 2013. View at Publisher · View at Google Scholar
  27. S. C. Hung, Y. P. Lin, and D. C. Tarng, “Erythropoiesis-stimulating agents in chronic kidney disease: what have we learned in 25 years?” Journal of the Formosan Medical Association, vol. 113, no. 1, pp. 3–10, 2013.
  28. W. B. Ershler, S. Sheng, J. McKelvey et al., “Serum erythropoietin and aging: a longitudinal analysis,” Journal of the American Geriatrics Society, vol. 53, no. 8, pp. 1360–1365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. P. Heaney, “The Vitamin D requirement in health and disease,” Journal of Steroid Biochemistry and Molecular Biology, vol. 97, no. 1-2, pp. 13–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Slatopolsky and J. A. Delmez, “Pathogenesis of secondary hyperparathyroidism,” Mineral and Electrolyte Metabolism, vol. 21, no. 1–3, pp. 91–96, 1995. View at Scopus
  31. C. Zoccali, F. Mallamaci, G. Tripepi, S. Cutrupi, and P. Pizzini, “Low triiodothyronine and survival in end-stage renal disease,” Kidney International, vol. 70, no. 3, pp. 523–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Chonchol, G. Lippi, G. Salvagno, G. Zoppini, M. Muggeo, and G. Targher, “Prevalence of subclinical hypothyroidism in patients with chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 5, pp. 1296–1300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. W. C. Duckworth, R. G. Bennett, and F. G. Hamel, “Insulin degradation: progress and potential,” Endocrine Reviews, vol. 19, no. 5, pp. 608–624, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. M. I. Yilmaz, A. Sonmez, A. R. Qureshi et al., “Endogenous testosterone, endothelial dysfunction, and cardiovascular events in men with nondialysis chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 7, pp. 1617–1625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. R. D. Toto, “Conventional measurement of renal function utilizing serum creatine, creatine clearance, inulin and para-aminohippuric acid clearance,” Current Opinion in Nephrology and Hypertension, vol. 4, no. 6, pp. 505–509, 1995. View at Scopus
  36. L. A. Stevens, R. Lafayette, R. D. Paerrone, and A. S. Levey, Laboratory Evaluation of Renal Function, Lippincott Williams and Wilkins, Baltimore, Md, USA, 2006.
  37. J. Brochner-Mortensen, “Current status on assessment and measurement of glomerular filtration rate,” Clinical Physiology, vol. 5, no. 1, pp. 1–17, 1985. View at Scopus
  38. L. A. Stevens and A. S. Levey, “Measured GFR as a confirmatory test for estimated GFR,” Journal of the American Society of Nephrology, vol. 20, no. 11, pp. 2305–2313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Prueksaritanont, M. L. Chen, and W. L. Chiou, “Simple and micro high-performance liquid chromatographic method for simultaneous determination of p-aminohippuric acid and iothalamate in biological fluids,” Journal of Chromatography, vol. 306, pp. 89–97, 1984. View at Scopus
  40. S. C. W. Brown and P. H. O'Reilly, “Iohexol clearance for the determination of glomerular filtration rate in clinical practice: evidence for a new gold standard,” Journal of Urology, vol. 146, no. 3, pp. 675–679, 1991. View at Scopus
  41. F. Gaspari, N. Perico, M. Matalone et al., “Precision of plasma clearance of iohexol for estimation of GFR in patients with renal disease,” Journal of the American Society of Nephrology, vol. 9, no. 2, pp. 310–313, 1998. View at Scopus
  42. A. Arvidsson and A. Hedman, “Plasma and renal clearance of iohexol—a study on the reproducibility of a method for the glomerular filtration rate,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 50, no. 7, pp. 757–761, 1990. View at Scopus
  43. E. Krutzen, S. E. Back, I. Nilsson-Ehle, and P. Nilsson-Ehle, “Plasma clearance of a new contrast agent, iohexol: a method for the assessment of glomerular filtration rate,” Journal of Laboratory and Clinical Medicine, vol. 104, no. 6, pp. 955–961, 1984. View at Scopus
  44. F. Gaspari, N. Perico, P. Ruggenenti et al., “Plasma clearance of nonradioactive lohexol as a measure of glomerular filtration rate,” Journal of the American Society of Nephrology, vol. 6, no. 2, pp. 257–263, 1995. View at Scopus
  45. M. V. Rocco, V. M. Buckalew Jr., L. C. Moore, and Z. K. Shihabi, “Capillary electrophoresis for the determination of glomerular filtration rate using nonradioactive iohexol,” The American Journal of Kidney Diseases, vol. 28, no. 2, pp. 173–177, 1996. View at Scopus
  46. J. Brochner-Mortensen, “Routine methods and their reliability for assessment of glomerular filtration rate in adults with special reference to total[51Cr]EDTA plasma clearance,” Danish Medical Bulletin, vol. 25, no. 5, pp. 181–202, 1978. View at Scopus
  47. S. B. Heymsfield, C. Arteaga, C. M. McManus, J. Smith, and S. Moffitt, “Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method,” The American Journal of Clinical Nutrition, vol. 37, no. 3, pp. 478–494, 1983. View at Scopus
  48. F. F. Horber, J. Scheidegger, and F. J. Frey, “Overestimation of renal function in glucocorticosteroid treated patients,” European Journal of Clinical Pharmacology, vol. 28, no. 5, pp. 537–541, 1985. View at Scopus
  49. O. Shemesh, H. Golbetz, J. P. Kriss, and B. D. Myers, “Limitations of creatinine as a filtration marker in glomerulopathic patients,” Kidney International, vol. 28, no. 5, pp. 830–838, 1985. View at Scopus
  50. L. A. Stevens and A. S. Levey, “Clinical implications of estimating equations for glomerular filtration rate,” Annals of Internal Medicine, vol. 141, no. 12, pp. 959–961, 2004. View at Scopus
  51. S. K. Gerard and H. Khayam-Bashi, “Characterization of creatinine error in ketotic patients. A prospective comparison of alkaline picrate methods with an enzymatic method,” The American Journal of Clinical Pathology, vol. 84, no. 5, pp. 659–664, 1985. View at Scopus
  52. G. L. Myers, W. G. Miller, J. Coresh et al., “Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program,” Clinical Chemistry, vol. 52, no. 1, pp. 5–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Hood, P. O. Attman, J. Ahlmén, and R. Jagenburg, “Renal hemodynamics and limitations of creatinine clearance in determining filtration rate in glomerular disease,” Scandinavian Journal of Urology and Nephrology, vol. 5, no. 2, pp. 154–161, 1971. View at Scopus
  54. A. Corsonello, C. Pedone, F. Corica, C. Mussi, P. Carbonin, and R. A. Incalzi, “Concealed renal insufficiency and adverse drug reactions in elderly hospitalized patients,” Archives of Internal Medicine, vol. 165, no. 7, pp. 790–795, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. B. J. Carrie, H. V. Golbetz, A. S. Michaels, and B. D. Myers, “Creatinine: an inadequate filtration marker in glomerular diseases,” The American Journal of Medicine, vol. 69, no. 2, pp. 177–182, 1980. View at Scopus
  56. G. D. James, J. E. Sealey, M. Alderman et al., “A longitudinal study of urinary creatinine and creatinine clearance in normal subjects. Race, sex, and age differences,” The American Journal of Hypertension, vol. 1, no. 2, pp. 124–131, 1988. View at Scopus
  57. S. Q. Lew and J. P. Bosch, “Effect of diet on creatinine clearance and excretion in young and elderly healthy subjects and in patients with renal disease,” Journal of the American Society of Nephrology, vol. 2, no. 4, pp. 856–865, 1991. View at Scopus
  58. J. Kyhse-Andersen, C. Schmidt, G. Nordin et al., “Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate,” Clinical Chemistry, vol. 40, no. 10, pp. 1921–1926, 1994. View at Scopus
  59. A. O. Grubb, “Cystatin C-Properties and use as diagnostic marker,” Advances in Clinical Chemistry, vol. 35, pp. 63–99, 2001. View at Scopus
  60. V. R. Dharnidharka, C. Kwon, and G. Stevens, “Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis,” The American Journal of Kidney Diseases, vol. 40, no. 2, pp. 221–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. O. Tenstad, A. B. Roald, A. Grubb, and K. Aukland, “Renal handling of radiolabelled human cystatin C in the rat,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 56, no. 5, pp. 409–414, 1996. View at Scopus
  62. B. Jacobsson, H. Lignelid, and U. S. R. Bergerheim, “Transthyretin and cystatin C are catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal cell carcinomas,” Histopathology, vol. 26, no. 6, pp. 559–564, 1995. View at Scopus
  63. L. Risch, R. Herklotz, A. Blumberg, and A. R. Huber, “Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients,” Clinical Chemistry, vol. 47, no. 11, pp. 2055–2059, 2001. View at Scopus
  64. P. Wiesli, B. Schwegler, G. A. Spinas, and C. Schmid, “Serum cystatin C is sensitive to small changes in thyroid function,” Clinica Chimica Acta, vol. 338, no. 1-2, pp. 87–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Pricker, P. Wiesli, M. Brändle, B. Schwegler, and C. Schmid, “Impact of thyroid dysfunction on serum cystatin C,” Kidney International, vol. 63, no. 5, pp. 1944–1947, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Pucci, S. Triscornia, D. Lucchesi et al., “Cystatin C and estimates of renal function: searching for a better measure of kidney function in diabetic patients,” Clinical Chemistry, vol. 53, no. 3, pp. 480–488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. M. G. Shlipak, M. J. Sarnak, R. Katz et al., “Cystatin C and the risk of death and cardiovascular events among elderly persons,” New England Journal of Medicine, vol. 352, no. 20, pp. 2049–2060, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Macdonald, S. Marcora, M. Jibani et al., “GFR estimation using cystatin C is not independent of body composition,” The American Journal of Kidney Diseases, vol. 48, no. 5, pp. 712–719, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. D. W. Cockcroft and M. H. Gault, “Prediction of creatinine clearance from serum creatinine,” Nephron, vol. 16, no. 1, pp. 31–41, 1976. View at Scopus
  70. H. A. Rolin III, P. M. Hall, and R. Wei, “Inaccuracy of estimated creatinine clearance for prediction of iothalamate glomerular filtration rate,” The American Journal of Kidney Diseases, vol. 4, no. 1, pp. 48–54, 1984. View at Scopus
  71. A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, “A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation,” Annals of Internal Medicine, vol. 130, no. 6, pp. 461–470, 1999. View at Scopus
  72. A. S. Levey, J. Coresh, T. Greene et al., “Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate,” Annals of Internal Medicine, vol. 145, no. 4, pp. 247–254, 2006. View at Scopus
  73. G. Norden, S. Bjorck, G. Granerus, and G. Nyberg, “Estimation of renal function in diabetic nephropathy. Comparison of five methods,” Nephron, vol. 47, no. 1, pp. 36–42, 1987. View at Scopus
  74. W. R. Waz, T. Quattrin, and L. G. Feld, “Serum creatinine, height, and weight do not predict glomerular filtration rate in children with IDDM,” Diabetes Care, vol. 16, no. 8, pp. 1067–1070, 1993. View at Scopus
  75. J. Stoves, E. J. Lindley, M. C. Barnfield, M. T. Burniston, and C. G. Newstead, “MDRD equation estimates of glomerular filtration rate in potential living kidney donors and renal transplant recipients with impaired graft function,” Nephrology Dialysis Transplantation, vol. 17, no. 11, pp. 2036–2037, 2002. View at Scopus
  76. L. A. Stevens, J. Coresh, H. I. Feldman et al., “Evaluation of the modification of diet in renal disease study equation in a large diverse population,” Journal of the American Society of Nephrology, vol. 18, no. 10, pp. 2749–2757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. S. Levey, L. A. Stevens, C. H. Schmid et al., “A new equation to estimate glomerular filtration rate,” Annals of Internal Medicine, vol. 150, no. 9, pp. 604–612, 2009. View at Scopus
  78. A. S. Levey and L. A. Stevens, “Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions,” The American Journal of Kidney Diseases, vol. 55, no. 4, pp. 622–627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. L. A. Stevens, C. H. Schmid, T. Greene et al., “Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2,” The American Journal of Kidney Diseases, vol. 56, no. 3, pp. 486–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. L. A. Inker, C. H. Schmid, H. Tighiouart, et al., “Estimating glomerular filtration rate from serum creatinine and cystatin C,” The New England Journal of Medicine, vol. 367, pp. 20–29, 2012. View at Publisher · View at Google Scholar
  81. E. S. Schaeffner, N. Ebert, P. Delanaye, et al., “Two novel equations to estimate kidney function in persons aged 70 years or older,” Annals of Internal Medicine, vol. 157, pp. 471–481, 2012. View at Publisher · View at Google Scholar
  82. L. Koppe, A. Klich, L. Dubourg, R. Ecochard, and A. Hadj-Aissa, “Performance of creatinine-based equations compared in older patients,” Journal of Nephrology, vol. 26, pp. 716–723, 2013. View at Publisher · View at Google Scholar
  83. F. Lattanzio, A. Corsonello, A. M. Abbatecola et al., “Relationship between renal function and physical performance in elderly hospitalized patients,” Rejuvenation Research, vol. 15, no. 6, pp. 545–552, 2012. View at Publisher · View at Google Scholar
  84. C. Pedone, A. Corsonello, S. Bandinelli, F. Pizzarelli, L. Ferrucci, and R. Antonelli Incalzi, “Relationship between renal function and functional decline: role of the estimating equation,” Journal of the American Medical Directors Association, vol. 13, no. 1, pp. 84.e11–84.e14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. M. G. Shlipak, C. Stehman-Breen, L. F. Fried et al., “The presence of frailty in elderly persons with chronic renal insufficiency,” The American Journal of Kidney Diseases, vol. 43, no. 5, pp. 861–867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. S. R. Walker, K. Gill, K. Macdonald et al., “Association of frailty and physical function in patients with non-dialysis CKD: a systematic review,” BMC Nephrology, vol. 14, article 228, 2013.
  87. S. Klawansky, E. Komaroff, P. F. Cavanaugh Jr. et al., “Relationship between age, renal function and bone mineral density in the US population,” Osteoporosis International, vol. 14, no. 7, pp. 570–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. T. L. Nickolas, D. J. McMahon, and E. Shane, “Relationship between moderate to severe kidney disease and hip fracture in the United States,” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 3223–3232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Stompor, M. Zablocki, and M. Lesiow, “Osteoporosis in mineral and bone disorders of chronic kidney disease,” Polskie Archiwum Medycyny Wewnetrznej, vol. 123, pp. 314–320, 2013.
  90. K. Yaffe, L. Ackerson, M. K. Tamura et al., “Chronic kidney disease and cognitive function in older adults: findings from the chronic renal insufficiency cohort cognitive study,” Journal of the American Geriatrics Society, vol. 58, no. 2, pp. 338–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Disthabanchong, “Vascular calcification in chronic kidney disease: pathogenesis and clinical implication,” World Journal of Nephrology, vol. 1, pp. 43–53, 2012. View at Publisher · View at Google Scholar
  92. L. Pantoni, “Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges,” The Lancet Neurology, vol. 9, no. 7, pp. 689–701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. S. L. Seliger, D. S. Siscovick, C. O. Stehman-Breen et al., “Moderate renal impairment and risk of dementia among older adults: the cardiovascular health cognition study,” Journal of the American Society of Nephrology, vol. 15, no. 7, pp. 1904–1911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Madero, A. Gul, and M. J. Sarnak, “Cognitive function in chronic kidney disease,” Seminars in Dialysis, vol. 21, no. 1, pp. 29–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. J. I. Rojas, M. C. Zurrú, M. Romano, L. Patrucco, and E. Cristiano, “Acute ischemic stroke and transient ischemic attack in the very old-risk factor profile and stroke subtype between patients older than 80 years and patients aged less than 80 years,” European Journal of Neurology, vol. 14, no. 8, pp. 895–899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. Y.-C. Chen, Y.-C. Su, C.-C. Lee, Y.-S. Huang, and S.-J. Hwang, “Chronic kidney disease itself is a causal risk factor for stroke beyond traditional cardiovascular risk factors: a nationwide cohort study in Taiwan,” PLoS ONE, vol. 7, no. 4, Article ID e36332, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. S. L. Seliger, W. T. Longstreth Jr., R. Katz et al., “Cystatin C and subclinical brain infarction,” Journal of the American Society of Nephrology, vol. 16, no. 12, pp. 3721–3727, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Reckert, J. Hinrichs, H. Pavenstadt, B. Frye, and G. Heuft, “Prevalence and correlates of anxiety and depression in patients with end-stage renal disease (ESRD),” Zeitschrift für Psychosomatische Medizin und Psychotherapie, vol. 59, pp. 170–188, 2013.
  99. Y.-C. Tsai, Y.-W. Chiu, C.-C. Hung et al., “Association of symptoms of depression with progression of CKD,” The American Journal of Kidney Diseases, vol. 60, pp. 54–61, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. R. A. Balogun, E. M. Abdel-Rahman, S. A. Balogun et al., “Association of depression and antidepressant use with mortality in a large cohort of patients with nondialysis-dependent CKD,” Clinical Journal of the American Society of Nephrology, vol. 7, pp. 1793–1800, 2012. View at Publisher · View at Google Scholar
  101. J. L. Babitt and H. Y. Lin, “Mechanisms of anemia in CKD,” Journal of the American Society of Nephrology, vol. 23, pp. 1631–1634, 2012. View at Publisher · View at Google Scholar
  102. P. McCarley, “The KDOQI clinical practice guidelines and clinical practice recommendations for treating anemia in patients with chronic kidney disease: implications for nurses,” Nephrology Nursing Journal, vol. 33, no. 4, pp. 423–428, 2006. View at Scopus
  103. B. W. J. H. Penninx, S. M. F. Pluijm, P. Lips et al., “Late-life anemia is associated with increased risk of recurrent falls,” Journal of the American Geriatrics Society, vol. 53, no. 12, pp. 2106–2111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. L. T. Goodnough and S. L. Schrier, “Evaluation and management of anemia in the elderly,” American Journal of Hematology, vol. 89, no. 1, pp. 88–96, 2013.
  105. D. D. Nicholl, S. B. Ahmed, A. H. Loewen et al., “Clinical presentation of obstructive sleep apnea in patients with chronic kidney disease,” Journal of Clinical Sleep Medicine, vol. 15, pp. 381–387, 2012.
  106. J. Kokkarinen, “Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study,” The American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 7, p. 950, 2011. View at Scopus
  107. S. B. Ahmed, P. E. Ronksley, B. R. Hemmelgarn et al., “Nocturnal hypoxia and loss of kidney function,” PLoS ONE, vol. 6, no. 4, Article ID e19029, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Zoccali, F. A. Benedetto, G. Tripepi et al., “Nocturnal hypoxemia, night-day arterial pressure changes and left ventricular geometry in dialysis patients,” Kidney International, vol. 53, no. 4, pp. 1078–1084, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. P. D. T. G. Mueller, M. D. Gomes, C. A. D. A. Viegas, and J. A. Neder, “Systemic effects of nocturnal hypoxemia in patients with chronic obstructive pulmonary disease without obstructive sleep apnea syndrome,” Jornal Brasileiro de Pneumologia, vol. 34, no. 8, pp. 567–574, 2008. View at Scopus
  110. “(CDC) CfDCaP: chronic obstructive pulmonary disease among adults—United States, 2011,” Morbidity and Mortality Weekly Report, vol. 61, pp. 938–943, 2012.
  111. R. A. Incalzi, A. Corsonello, C. Pedone, S. Battaglia, G. Paglino, and V. Bellia, “Chidity of COPD,” Chest, vol. 137, no. 4, pp. 831–837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. H. Suzuki, A. Asakawa, H. Amitani, N. Nakamura, and A. Inui, “Ghrelin and cachexia in chronic kidney disease,” Pediatric Nephrology, vol. 28, pp. 521–526, 2013. View at Publisher · View at Google Scholar
  113. S. S. Gunta and R. H. Mak, “Ghrelin and leptin pathophysiology in chronic kidney disease,” Pediatric Nephrology, vol. 28, pp. 611–616, 2013. View at Publisher · View at Google Scholar
  114. M. P. Doogue and T. M. Polasek, “Drug dosing in renal disease,” Clinical Biochemist Reviews, vol. 32, no. 2, pp. 69–73, 2011. View at Scopus
  115. A. Corsonello, I. Laino, S. Garasto, and R. Antonelli Incalzi, “Estimating renal function in older and frail patients: implications for drug dosing,” Journal of the American Medical Directors Association, vol. 13, no. 1, p. e5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. A. C. Drenth-van Maanen, P. A. Jansen, J. H. Proost et al., “Renal function assessment in older adults,” British Journal of Clinical Pharmacology, vol. 76, pp. 616–623, 2013.
  117. M. C. Thomas, “Diuretics, ACE inhibitors and NSAIDs—the triple whammy,” Medical Journal of Australia, vol. 172, no. 4, pp. 184–185, 2000. View at Scopus
  118. K. K. Loboz and G. M. Shenfield, “Drug combinations and impaired renal function—the ‘triple whammy’,” British Journal of Clinical Pharmacology, vol. 59, no. 2, pp. 239–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. H. J. Cox, S. Bhandari, A. S. Rigby, and E. S. Kilpatrick, “Mortality at low and high estimated glomerular filtration rate values: a “U” shaped curve,” Nephron, vol. 110, no. 2, pp. c67–c72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Peters, N. Beckett, R. Poulter et al., “Kidney function in the very elderly with hypertension: data from the hypertension in the very elderly (HYVET) trial,” Age and Ageing, vol. 42, pp. 253–258, 2013. View at Publisher · View at Google Scholar
  121. M. Tonelli, S. W. Klarenbach, A. M. Lloyd et al., “Higher estimated glomerular filtration rates may be associated with increased risk of adverse outcomes, especially with concomitant proteinuria,” Kidney International, vol. 80, no. 12, pp. 1306–1314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Shastri, R. Katz, D. E. Rifkin et al., “Kidney function and mortality in octogenarians: Cardiovascular Health Study All Stars,” Journal of the American Geriatrics Society, vol. 60, pp. 1201–1207, 2012. View at Publisher · View at Google Scholar
  123. S. Shastri and M. J. Sarnak, “Chronic kidney disease: high eGFR and mortality: high true GFR or a marker of frailty?” Nature Reviews Nephrology, vol. 7, no. 12, pp. 680–682, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. N. Bank, “Mechanisms of diabetic hyperfiltration,” Kidney International, vol. 40, no. 4, pp. 792–807, 1991. View at Scopus
  125. R. J. Bosma, J. J. Homan Van Der Heide, E. J. Oosterop, P. E. De Jong, and G. Navis, “Body mass index is associated with altered renal hemodynamics in non-obese healthy subjects,” Kidney International, vol. 65, no. 1, pp. 259–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. J. H. Ix, I. H. De Boer, C. L. Wassel, M. H. Criqui, M. G. Shlipak, and M. A. Whooley, “Urinary creatinine excretion rate and mortality in persons with coronary artery disease: the heart and soul study,” Circulation, vol. 121, no. 11, pp. 1295–1303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. R. D. Perrone, N. E. Madias, and A. S. Levey, “Serum creatinine as an index of renal function: new insights into old concepts,” Clinical Chemistry, vol. 38, no. 10, pp. 1933–1953, 1992. View at Scopus
  128. C. Pedone, A. Corsonello, and R. A. Incalzi, “Estimating renal function in older people: a comparison of three formulas,” Age and Ageing, vol. 35, no. 2, pp. 121–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Corsonello, C. Pedone, F. Lattanzio et al., “Agreement between equations estimating glomerular filtration rate in elderly nursing home residents and in hospitalised patients: implications for drug dosing,” Age and Ageing, vol. 40, no. 5, pp. 583–589, 2011. View at Publisher · View at Google Scholar · View at Scopus