About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 925121, 7 pages
http://dx.doi.org/10.1155/2014/925121
Review Article

Telomere Length Reprogramming in Embryos and Stem Cells

1Department of Obstetrics and Gynecology, New York University Langone Medical Center, 180 Varick Street, No. 761, New York, NY 10014, USA
2College of Life Sciences, Nankai University, Tianjin 300071, China

Received 9 November 2013; Accepted 15 January 2014; Published 27 February 2014

Academic Editor: Xu-Dong Zhu

Copyright © 2014 Keri Kalmbach et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Friedrich, E. U. Griese, M. Schwab, P. Fritz, K. P. Thon, and U. Klotz, “Telomere length in different tissues of elderly patients,” Mechanisms of Ageing and Development, vol. 119, no. 3, pp. 89–99, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. C. B. Harley, A. B. Futcher, and C. W. Greider, “Telomeres shorten during ageing of human fibroblasts,” Nature, vol. 345, no. 6274, pp. 458–460, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. T. de Lange, “How telomeres solve the end-protection problem,” Science, vol. 326, no. 5955, pp. 948–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. R. Cech, “Beginning to understand the end of the chromosome,” Cell, vol. 116, no. 2, pp. 273–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. W. Greider and E. H. Blackburn, “Identification of a specific telomere terminal transferase activity in tetrahymena extracts,” Cell, vol. 43, no. 2, pp. 405–413, 1985. View at Scopus
  6. M. A. Dunham, A. A. Neumann, C. L. Fasching, and R. R. Reddel, “Telomere maintenance by recombination in human cells,” Nature Genetics, vol. 26, no. 4, pp. 447–450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Henson, A. Neumann, T. Yeager, and R. Reddel, “Alternative lengthening of telomeres in mammalian cells,” Oncogene, vol. 21, no. 4, pp. 598–610, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Neumann, C. M. Watson, J. R. Noble, et al., “Alternative lengthening of telomeres in normal mammalian somatic cells,” Genes and Development, vol. 27, no. 1, pp. 18–23, 2013. View at Publisher · View at Google Scholar
  9. L. Liu, S. M. Bailey, M. Okuka et al., “Telomere lengthening early in development,” Nature Cell Biology, vol. 9, no. 12, pp. 1436–1441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Murillo-Ortiz, F. Albarrán-Tamayo, D. Arenas-Aranda et al., “Telomere length and type 2 diabetes in males, a premature aging syndrome,” Aging Male, vol. 15, no. 1, pp. 54–58, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Du, J. Prescott, M. C. Cornelis, et al., “Genetic predisposition to higher body mass index or type 2 diabetes and leukocyte telomere length in the Nurses' Health Study,” PLoS ONE, vol. 8, no. 2, Article ID e52240, 2013.
  12. A. L. Fitzpatrick, R. A. Kronmal, M. Kimura, et al., “Leukocyte telomere length and mortality in the Cardiovascular Health Study,” The Journals of Gerontology A, vol. 66, no. 4, pp. 421–429, 2011.
  13. D. Hartmann, U. Srivastava, M. Thaler, et al., “Telomerase gene mutations are associated with cirrhosis formation,” Hepatology, vol. 53, no. 5, pp. 1608–1617, 2011. View at Publisher · View at Google Scholar
  14. R. T. Calado, J. Brudno, P. Mehta et al., “Constitutional telomerase mutations are genetic risk factors for cirrhosis,” Hepatology, vol. 53, no. 5, pp. 1600–1607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Martinez-Delgado, K. Yanowsky, L. Inglada-Perez et al., “Genetic anticipation is associated with Telomere shortening in hereditary breast cancer,” PLoS Genetics, vol. 7, no. 7, Article ID e1002182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Armanios, “Telomeres and age-related disease: how telomere biology informs clinical paradigms,” The Journal of Clinical Investigation, vol. 123, no. 3, pp. 996–1002, 2013. View at Publisher · View at Google Scholar
  17. C. Gunes and K. L. Rudolph, “The role of telomeres in stem cells and cancer,” Cell, vol. 152, no. 3, pp. 390–393, 2013.
  18. C. M. Heaphy, G. S. Yoon, S. B. Peskoe, et al., “Prostate cancer cell telomere length variability and stromal cell telomere length as prognostic markers for metastasis and death,” Cancer Discovery, vol. 3, no. 10, pp. 1130–1141, 2013. View at Publisher · View at Google Scholar
  19. E. Kuhn, A. K. Meeker, K. Visvanathan et al., “Telomere length in different histologic types of ovarian carcinoma with emphasis on clear cell carcinoma,” Modern Pathology, vol. 24, no. 8, pp. 1139–1145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Chen, M. Kimura, S. Kim et al., “Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule,” Journals of Gerontology A, vol. 66, no. 3, pp. 312–319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Atzmon, M. Cho, R. M. Cawthon, et al., “Evolution in health and medicine Sackler colloquium: genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, 1, pp. 1710–1717, 2010. View at Publisher · View at Google Scholar
  22. B. R. Houghtaling, S. Canudas, and S. Smith, “A role for sister telomere cohesion in telomere elongation by telomerase,” Cell Cycle, vol. 11, no. 1, pp. 19–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Savage, N. Giri, G. M. Baerlocher, N. Orr, P. M. Lansdorp, and B. P. Alter, “TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita,” The American Journal of Human Genetics, vol. 82, no. 2, pp. 501–509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. A. Savage and A. A. Bertuch, “The genetics and clinical manifestations of telomere biology disorders,” Genetics in Medicine, vol. 12, no. 12, pp. 753–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Vulliamy, A. Marrone, F. Goldman et al., “The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita,” Nature, vol. 413, no. 6854, pp. 432–435, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Knight, T. Vulliamy, A. Copplestone, E. Gluckman, P. Mason, and I. Dokal, “Dyskeratosis congenita (DC) registry: identification of new features of DC,” British Journal of Haematology, vol. 103, no. 4, pp. 990–996, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. N. S. Heiss, S. W. Knight, T. J. Vulliamy et al., “X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions,” Nature Genetics, vol. 19, no. 1, pp. 32–38, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. B. P. Alter, N. Giri, S. A. Savage, and P. S. Rosenberg, “Cancer in dyskeratosis congenita,” Blood, vol. 113, no. 26, pp. 6549–6557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. L. Keefe, L. Liu, and K. Marquard, “Telomeres and aging-related meiotic dysfunction in women,” Cellular and Molecular Life Sciences, vol. 64, no. 2, pp. 139–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. K. H. Kalmbach, D. M. F. Antunes, R. C. Dracxler, et al., “Telomeres and Human Reproduction,” Fertility and Sterility, vol. 99, no. 1, pp. 23–29, 2013. View at Publisher · View at Google Scholar
  31. F. Wang, X. Pan, K. Kalmbach, et al., “Robust measurement of telomere length in single cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 21, pp. E1906–E1912, 2013. View at Publisher · View at Google Scholar
  32. T. Yamada-Fukunaga, M. Yamada, T. Hamatani, et al., “Age-associated telomere shortening in mouse oocytes,” Reproductive Biology and Endocrinology, vol. 11, no. 1, article 108, 2013. View at Publisher · View at Google Scholar
  33. M. Liu, Y. Yin, X. Ye, et al., “Resveratrol protects against age-associated infertility in mice,” Human Reproduction, vol. 28, no. 3, pp. 707–717, 2013. View at Publisher · View at Google Scholar
  34. A. Gibbons, “Older dads have healthier kids than you think,” Science, vol. 336, no. 6081, p. 539, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. D. T. Eisenberg, M. G. Hayes, and C. W. Kuzawa, “Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 26, pp. 10251–10256, 2012.
  36. M. Kimura, L. F. Cherkas, B. S. Kato et al., “Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm,” PLoS Genetics, vol. 4, no. 2, article e37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Prescott, M. Du, J. Y. Wong, J. Han, and I. de Vivo, “Paternal age at birth is associated with offspring leukocyte telomere length in the nurses' health study,” Human Reproduction, vol. 27, no. 12, pp. 3622–3631, 2012.
  38. S. Schaetzlein, A. Lucas-Hahn, E. Lemme et al., “Telomere length is reset during early mammalian embryogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 21, pp. 8034–8038, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. N. R. Treff, J. Su, D. Taylor, and R. T. Scott, “Telomere dna deficiency is associated with development of human embryonic aneuploidy,” PLoS Genetics, vol. 7, no. 6, Article ID e1002161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Varela, R. P. Schneider, S. Ortega, and M. A. Blasco, “Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15207–15212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Turner, H. P. Wong, J. Rai, and G. M. Hartshorne, “Telomere lengths in human oocytes, cleavage stage embryos and blastocysts,” Molecular Human Reproduction, vol. 16, no. 9, pp. 685–694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Turner and G. M. Hartshorne, “Telomere lengths in human pronuclei, oocytes and spermatozoa,” Molecular Human Reproduction, vol. 19, no. 8, pp. 510–518, 2013.
  43. D. L. Keefe, S. Franco, L. Liu et al., “Telomere length predicts embryo fragmentation after in vitro fertilization in women—toward a telomere theory of reproductive aging in women,” The American Journal of Obstetrics and Gynecology, vol. 192, no. 4, pp. 1256–1261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Liu, M. A. Blasco, J. R. Trimarchi, and D. L. Keefe, “An essential role for functional telomeres in mouse germ cells during fertilization and early development,” Developmental Biology, vol. 249, no. 1, pp. 74–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Ghosh, E. Feingold, S. Chakraborty, and S. K. Dey, “Telomere length is associated with types of chromosome 21 nondisjunction: a new insight into the maternal age effect on down syndrome birth,” Human Genetics, vol. 127, no. 4, pp. 403–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. C. W. Hanna, K. L. Bretherick, J. L. Gair, et al., “Telomere length and reproductive aging,” Human Reproduction, vol. 24, no. 5, pp. 1206–1211, 2009. View at Publisher · View at Google Scholar
  47. H. Y. Jeon, S. H. Hyun, G. S. Lee et al., “The analysis of telomere length and telomerase activity in cloned pigs and cows,” Molecular Reproduction and Development, vol. 71, no. 3, pp. 315–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Miyashita, Y. Kubo, M. Yonai et al., “Cloned cows with short telomeres deliver healthy offspring with normal-length telomeres,” Journal of Reproduction and Development, vol. 57, no. 5, pp. 636–642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Imsoonthornruksa, A. Sangmalee, K. Srirattana, R. Parnpai, and M. Ketudat-Cairns, “Development of intergeneric and intrageneric somatic cell nuclear transfer (SCNT) cat embryos and the determination of telomere length in cloned offspring,” Cellular Reprogramming, vol. 14, no. 1, pp. 79–87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. D. H. Betts, V. Bordignon, J. R. Hill et al., “Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1077–1082, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. G. F. Mastromonaco, S. D. Perrault, D. H. Betts, and W. A. King, “Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer,” BMC Developmental Biology, vol. 6, article 41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Huang, F. Wang, M. Okuka et al., “Association of telomere length with authentic pluripotency of ES/iPS cells,” Cell Research, vol. 21, no. 5, pp. 779–792, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Wang, Y. Yin, X. Ye et al., “Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells,” Cell Research, vol. 22, no. 4, pp. 757–768, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. M. A. Blasco, “The epigenetic regulation of mammalian telomeres,” Nature Reviews Genetics, vol. 8, no. 4, pp. 299–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Pucci, L. Gardano, and L. Harrington, “Short telomeres in ESCs lead to unstable differentiation,” Cell Stem Cell, vol. 12, no. 4, pp. 479–486, 2013. View at Publisher · View at Google Scholar
  58. G. Falco, S. L. Lee, I. Stanghellini, U. C. Bassey, T. Hamatani, and M. S. H. Ko, “Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells,” Developmental Biology, vol. 307, no. 2, pp. 539–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Zalzman, G. Falco, L. V. Sharova et al., “Zscan4 regulates telomere elongation and genomic stability in ES cells,” Nature, vol. 464, no. 7290, pp. 858–863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Dan, M. Li, and J. Yang, “Roles for Tbx3 in regulation of two-cell state and telomere elongation in mouse ES cells,” Scientific Reports, vol. 3, article 3492, 2013.
  61. J. Jiang, W. Lv, X. Ye, et al., “Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation,” Cell Research, vol. 23, no. 1, pp. 92–106, 2013. View at Publisher · View at Google Scholar
  62. S. Agarwal, Y. H. Loh, E. M. McLoughlin et al., “Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients,” Nature, vol. 464, no. 7286, pp. 292–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. L. F. Z. Batista, M. F. Pech, F. L. Zhong et al., “Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells,” Nature, vol. 474, no. 7351, pp. 399–404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Tachibana, P. Amato, M. Sparman, et al., “Human embryonic stem cells derived by somatic cell nuclear transfer,” Cell, vol. 153, no. 6, pp. 1228–1238, 2013. View at Publisher · View at Google Scholar
  65. R. Le, Z. Kou, Y. Jiang, et al., “Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells,” Cell Stem Cell, vol. 14, no. 1, 2013.
  66. S. Yehezkel, A. Rebibo-Sabbah, Y. Segev et al., “Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives,” Epigenetics, vol. 6, no. 1, pp. 63–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. R. P. Schneider, I. Garrobo, M. Foronda, et al., “TRF1 is a stem cell marker and is essential for the generation of induced pluripotent stem cells,” Nature Communications, vol. 4, article 1946, 2013.
  68. R. Benetti, S. Gonzalo, I. Jaco et al., “Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination,” Journal of Cell Biology, vol. 178, no. 6, pp. 925–936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Benetti, M. García-Cao, and M. A. Blasco, “Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres,” Nature Genetics, vol. 39, no. 2, pp. 243–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Gonzalo, I. Jaco, M. F. Fraga et al., “DNA methyltransferases control telomere length and telomere recombination in mammalian cells,” Nature Cell Biology, vol. 8, no. 4, pp. 416–424, 2006. View at Publisher · View at Google Scholar · View at Scopus