BioMed Research International: Biochemistry http://www.hindawi.com The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Hydrophobic Substituents of the Phenylmethylsulfamide Moiety Can Be Used for the Development of New Selective Carbonic Anhydrase Inhibitors Tue, 02 Sep 2014 13:18:41 +0000 http://www.hindawi.com/journals/bmri/2014/523210/ A new series of compounds containing a sulfamide moiety as zinc-binding group (ZBG) has been synthesized and tested for determining inhibitory properties against four human carbonic anhydrase (hCA) isoforms, namely, CAs I, II, IX, and XII. The X-ray structure of the cytosolic dominant isoform hCA II in complex with the best inhibitor of the series has also been determined providing further insights into sulfamide binding mechanism and confirming that such zinc-binding group, if opportunely derivatized, can be usefully exploited for obtaining new potent and selective CAIs. The analysis of the structure also suggests that for drug design purposes the but-2-yn-1-yloxy moiety tail emerges as a very interesting substituent of the phenylmethylsulfamide moiety due to its capability to establish strong van der Waals interactions with a hydrophobic cleft on the hCA II surface, delimited by residues Phe131, Val135, Pro202, and Leu204. Indeed, the complementarity of this tail with the cleft suggests that different substituents could be used to discriminate between isoforms having clefts with different sizes. Giuseppina De Simone, Ginta Pizika, Simona Maria Monti, Anna Di Fiore, Jekaterina Ivanova, Igor Vozny, Peteris Trapencieris, Raivis Zalubovskis, Claudiu T. Supuran, and Vincenzo Alterio Copyright © 2014 Giuseppina De Simone et al. All rights reserved. Role of Feed Forward Neural Networks Coupled with Genetic Algorithm in Capitalizing of Intracellular Alpha-Galactosidase Production by Acinetobacter sp. Sun, 31 Aug 2014 08:07:46 +0000 http://www.hindawi.com/journals/bmri/2014/361732/ Alpha-galactosidase production in submerged fermentation by Acinetobacter sp. was optimized using feed forward neural networks and genetic algorithm (FFNN-GA). Six different parameters, pH, temperature, agitation speed, carbon source (raffinose), nitrogen source (tryptone), and K2HPO4, were chosen and used to construct 6-10-1 topology of feed forward neural network to study interactions between fermentation parameters and enzyme yield. The predicted values were further optimized by genetic algorithm (GA). The predictability of neural networks was further analysed by using mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R2-value for training and testing data. Using hybrid neural networks and genetic algorithm, alpha-galactosidase production was improved from 7.5 U/mL to 10.2 U/mL. Sirisha Edupuganti, Ravichandra Potumarthi, Thadikamala Sathish, and Lakshmi Narasu Mangamoori Copyright © 2014 Sirisha Edupuganti et al. All rights reserved. Proteomics Analysis for Finding Serum Markers of Ovarian Cancer Sun, 31 Aug 2014 07:50:14 +0000 http://www.hindawi.com/journals/bmri/2014/179040/ A combination of peptide ligand library beads (PLLB) and 1D gel liquid chromatography-mass spectrometry/mass spectrometry (1DGel-LC-MS/MS) was employed to analyze serum samples from patients with ovarian cancer and from healthy controls. Proteomic analysis identified 1200 serum proteins, among which 57 proteins were upregulated and 10 were downregulated in the sera from cancer patients. Retinol binding protein 4 (RBP4) is highly upregulated in the ovarian cancer serum samples. ELISA was employed to measure plasma concentrations of RBP4 in 80 samples from ovarian cancer patients, healthy individuals, myoma patients, and patients with benign ovarian tumor, respectively. The plasma concentrations of RBP4 ranging from 76.91 to 120.08 ng/mL with the mean value  ng/mL in ovarian cancer patients are significantly higher than those in healthy individuals ( ng/mL). Results were further confirmed with immunohistochemistry, demonstrating that RBP4 expression levels in normal ovarian tissue were lower than those in ovarian cancer tissues. Our results suggested that RBP4 is a potential biomarker for diagnostic of screening ovarian cancer. Yushan Cheng, Chongdong Liu, Nawei Zhang, Shengdian Wang, and Zhenyu Zhang Copyright © 2014 Yushan Cheng et al. All rights reserved. Destabilization of Akt Promotes the Death of Myeloma Cell Lines Sun, 31 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/190629/ Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM) of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG). Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers. Yanan Zhang, Yunfeng Fu, Fan Zhang, and Jing Liu Copyright © 2014 Yanan Zhang et al. All rights reserved. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus Thu, 28 Aug 2014 15:26:20 +0000 http://www.hindawi.com/journals/bmri/2014/417461/ A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, Km values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. Shuang Zhao, Cheng-Bo Rong, Chang Kong, Yu Liu, Feng Xu, Qian-Jiang Miao, Shou-Xian Wang, He-Xiang Wang, and Guo-Qing Zhang Copyright © 2014 Shuang Zhao et al. All rights reserved. Creatine, L-Carnitine, and ω3 Polyunsaturated Fatty Acid Supplementation from Healthy to Diseased Skeletal Muscle Thu, 28 Aug 2014 15:19:19 +0000 http://www.hindawi.com/journals/bmri/2014/613890/ Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases. Giuseppe D’Antona, Seyed Mohammad Nabavi, Piero Micheletti, Arianna Di Lorenzo, Roberto Aquilani, Enzo Nisoli, Mariangela Rondanelli, and Maria Daglia Copyright © 2014 Giuseppe D’Antona et al. All rights reserved. Symbiotic Plant Peptides Eliminate Candida albicans Both In Vitro and in an Epithelial Infection Model and Inhibit the Proliferation of Immortalized Human Cells Thu, 28 Aug 2014 09:43:50 +0000 http://www.hindawi.com/journals/bmri/2014/320796/ The increasing number of multidrug-resistant microbes now emerging necessitates the identification of novel antimicrobial agents. Plants produce a great variety of antimicrobial peptides including hundreds of small, nodule-specific cysteine-rich NCR peptides that, in the legume Medicago truncatula, govern the differentiation of endosymbiotic nitrogen fixing bacteria and, in vitro, can display potent antibacterial activities. In this study, the potential candidacidal activity of 19 NCR peptides was investigated. Cationic NCR peptides having an isoelectric point above 9 were efficient in killing Candida albicans, one of the most common fungal pathogens of humans. None of the tested NCR peptides were toxic for immortalized human epithelial cells at concentrations that effectively killed the fungus; however, at higher concentrations, some of them inhibited the division of the cells. Furthermore, the cationic peptides successfully inhibited C. albicans induced human epithelial cell death in an in vitro coculture model. These results highlight the therapeutic potential of cationic NCR peptides in the treatment of candidiasis. Lilla Ördögh, Andrea Vörös, István Nagy, Éva Kondorosi, and Attila Kereszt Copyright © 2014 Lilla Ördögh et al. All rights reserved. Angiotensin I Converting Enzyme Inhibitory Peptides Obtained after In Vitro Hydrolysis of Pea (Pisum sativum var. Bajka) Globulins Thu, 28 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/438459/ Pea seeds represent a valuable source of active compounds that may positively influence health. In this study, the pea globulins were digested in vitro under gastrointestinal condition and potentially bioaccessible angiotensin I converting enzyme (ACE) inhibitory peptides were identified. The degree of hydrolysis after pepsin, 14.42%, and pancreatin, 30.65%, were noted. The peptides with the highest ACE inhibitory properties were separated using ion exchange chromatography on DEAE-cellulose. Thirteen peptides fractions were obtained but only four showed potential antihypertensive properties. The highest inhibitory activity was determined for the fraction F8 (IC50 = 0.0014 mg/mL). This fraction was separated on Sephadex G10 and two peptide fractions were obtained. The peptides fraction (B) with the highest ACE inhibitory activity (IC50 = 0.073 mg/mL) was identified by ESI-MS/MS. The sequences of ACE inhibitory peptides were GGSGNY, DLKLP, GSSDNR, MRDLK, and HNTPSR. Based on Lineweaver-Burk plots for the fraction B, the kinetic parameters as , , and and mode of inhibition were determined. This fraction belongs to uncompetitive inhibitor of ACE activity. The seeds of pea are the source of precursor protein, which releases the ACE inhibitory peptides as a result of enzymatic hydrolysis. Anna Jakubczyk and Barbara Baraniak Copyright © 2014 Anna Jakubczyk and Barbara Baraniak. All rights reserved. Molecular Cloning and Biochemical Characterization of a Recombinant Sterol 3-O-Glucosyltransferase from Gymnema sylvestre R.Br. Catalyzing Biosynthesis of Steryl Glucosides Wed, 27 Aug 2014 07:17:06 +0000 http://www.hindawi.com/journals/bmri/2014/934351/ Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants. Pragya Tiwari, Rajender Singh Sangwan, Asha, B. N. Mishra, Farzana Sabir, and Neelam S. Sangwan Copyright © 2014 Pragya Tiwari et al. All rights reserved. A Time-Dose Model to Quantify the Antioxidant Responses of the Oxidative Hemolysis Inhibition Assay (OxHLIA) and Its Extension to Evaluate Other Hemolytic Effectors Wed, 27 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/632971/ The development of a convenient mathematical application for testing the antioxidant potential of standard and novel therapeutic agents is essential for the research community to perform evaluations in a more precise form. The in vitro oxidative hemolysis inhibition assay, despite its relevance for in vivo responses, lacks a proper mathematical model to quantify the responses. In this work, a simple nonlinear time-dose tool to test the effectiveness of antioxidant compounds is presented. The model was verified with available experimental data from the bibliography. The model helps to describe accurately the antioxidant response as a function of time and dose allowing comparisons between compounds. Its advantages are a simple application, provision of parametric estimates that characterize the response, simplification of the protocol, economization of experimental effort, and facilitation of rigorous comparisons among the effects of different compounds and experimental approaches. Finally, other effectors that may obstruct or be of interest for the antioxidant determination are also modeled in similar principles. Thus, the basis of more complex multivariable models is provided. In all experimental data fitted, the calculated parameters were always statistically significant, the equations prove to be consistent, and the correlation coefficient of determination was in all cases higher than 0.98. M. A. Prieto and J. A. Vázquez Copyright © 2014 M. A. Prieto and J. A. Vázquez. All rights reserved. Anti-Inflammatory Effects of Siegesbeckia orientalis Ethanol Extract in In Vitro and In Vivo Models Tue, 26 Aug 2014 13:01:25 +0000 http://www.hindawi.com/journals/bmri/2014/329712/ This study aims to investigate the anti-inflammatory responses and mechanisms of Siegesbeckia orientalis ethanol extract (SOE). In cell culture experiments, RAW264.7 cells were pretreated with SOE and stimulated with lipopolysaccharide (LPS) for inflammatory mediators assay. In animal experiments, mice were tube-fed with SOE for 1 week, and s.c. injected with λ-carrageenan or i.p. injected with LPS to simulate inflammation. The degree of paw edema was assessed, and cytokine profile in sera and mouse survival were recorded. Data showed that SOE significantly reduced NO, IL-6, and TNF-α production in LPS-stimulated RAW264.7 cells. In vivo studies demonstrated that mice supplemented with 32 mg SOE/kg BW/day significantly lowered sera IL-6 level and resulted a higher survival rate compared to the control group (). Furthermore, SOE inhibited LPS-induced NF-κB activation by blocking the degradation of IκB-α. The SOE also reduced significantly the phosphorylation of ERK1/2, p38, and JNK in a dose-dependent manner. In summary, the in vitro and in vivo evidence indicate that SOE can attenuate acute inflammation by inhibiting inflammatory mediators via suppression of MAPKs- and NF-κB-dependent pathways. Yong-Han Hong, Li-Wen Weng, Chi-Chang Chang, Hsia-Fen Hsu, Chao-Ping Wang, Shih-Wei Wang, and Jer-Yiing Houng Copyright © 2014 Yong-Han Hong et al. All rights reserved. Evaluation of the Antioxidant Activity and Antiproliferative Effect of the Jaboticaba (Myrciaria cauliflora) Seed Extracts in Oral Carcinoma Cells Mon, 18 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/185946/ It is becoming increasingly evident that certain phytochemicals possess cancer chemopreventive properties. In this study, the antiproliferative activity of extracts from different parts of the jaboticaba (Myrciaria cauliflora) plant was evaluated for its effect on human oral carcinoma cell lines. The cytotoxicities of various plant extract concentrations were examined and the 50% maximal inhibitory concentration (IC50) was determined. Water extracts of jaboticaba seeds showed concentration-dependent antiproliferative effects. Annexin V/propidium iodide positivity with active caspase-3 induction indicated that the treated cells underwent apoptosis. Several important regulatory proteins (Bcl-2, Bcl-xL, Bid, and survivin) involved in apoptosis were also evaluated. The antioxidant activity of jaboticaba was investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays, and the drug concentration eliciting 50% maximum stimulation (SC50) was determined. The present findings suggest that water extracts of jaboticaba seeds exhibit an antiproliferative effect against oral cancer cells by inducing apoptosis through downregulating survivin expression and thereby activating caspase-mediated Bid cleavage. Wen-Hung Wang, Yu-Chang Tyan, Zong-Shiow Chen, Ching-Gong Lin, Ming-Hui Yang, Shyng-Shiou Yuan, and Wan-Chi Tsai Copyright © 2014 Wen-Hung Wang et al. All rights reserved. Plasma Total Homocysteine Levels in Diabetic Retinopathy Thu, 14 Aug 2014 11:37:17 +0000 http://www.hindawi.com/journals/bmri/2014/758634/ Huseyin Kayadibi, Erdim Sertoglu, and Metin Uyanik Copyright © 2014 Huseyin Kayadibi et al. All rights reserved. Proteomic Analysis of Gossypol Induces Necrosis in Multiple Myeloma Cells Thu, 14 Aug 2014 11:22:30 +0000 http://www.hindawi.com/journals/bmri/2014/839232/ Gossypol is a phenolic aldehyde extracted from plants and is known to be an antitumor agent to induce cancer cell apoptosis. In the present study, multiple myeloma cells were treated with gossypol, which resulted in an increase of cellular reactive oxygen species (ROS) and cell necrosis. Quantitative proteomic analysis was carried out to identify differentially expressed proteins between untreated and gossypol-treated cells. Proteomic analysis identified 4330 proteins, in which 202 proteins are upregulated and 383 proteins are downregulated in gossypol-treated cells as compared to the untreated cells. Importantly, proteomic and western blot analysis showed that apoptosis regulators BAK and Bax were upregulated in gossypol-treated cells, indicating that Bcl-2 associated death pathway was activated. Similarly, gossypol also induced upregulations of DNA mismatch repair proteins and DNA replication licensing factor, suggesting that gossypol caused significant DNA damage. Furthermore, upregulations of HLA class I and class II histocompatibility antigens and beta-2-microglobulin were observed in gossypol-treated cells, indicating that gossypol has a novel function to activate cellular immune responses. Our data demonstrate that the execution of necrosis is a complex process involving ROS, DNA damage, and Bcl-2 family proteins. Gossypol-activated immune responses are a potential new approach for multiple myeloma chemotherapy. Renhua Xu, Enbing Tian, Haiping Tang, Chongdong Liu, and Qingtao Wang Copyright © 2014 Renhua Xu et al. All rights reserved. Variability in Myosteatosis and Insulin Resistance Induced by High-Fat Diet in Mouse Skeletal Muscles Thu, 14 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/569623/ Nutrient overload leads to impaired muscle oxidative capacity and insulin sensitivity. However, comparative analyses of the effects of dietary manipulation on skeletal muscles with different fiber composition are lacking. This study aimed to investigate the selective adaptations in the soleus and tibialis anterior muscles evoked by administration of high-fat diet for 12 weeks in 10 mice (HFD mice) compared to 10 animals fed with a normal chow diet (control mice). Mice fed with the HFD diet exhibited hyperlipidemia, hyperinsulinemia, hyperglycemia, and lower exercise capacity in comparison to control mice. In control mice, soleus fibers showed higher lipid content than tibialis anterior fibers. In contrast, the lipid content was similar between the two muscles in HFD mice. Significant differences in markers of muscle mitochondrial production and/or activity as well as of lipid synthesis were detected between HFD mice and control mice, especially in the tibialis anterior. Moreover, translocation of GLUT-4 transporter to the plasma membrane and activation of the insulin signaling pathway were markedly inhibited in the tibialis and slightly reduced in the soleus of HFD mice compared to control mice. Overall, these results show that adaptive responses to dietary manipulation occur in a muscle-specific pattern. Massimo Collino, Raffaella Mastrocola, Debora Nigro, Fausto Chiazza, Manuela Aragno, Giuseppe D’Antona, and Marco A. Minetto Copyright © 2014 Massimo Collino et al. All rights reserved. Phosphoproteomic Analysis of Gossypol-Induced Apoptosis in Ovarian Cancer Cell Line, HOC1a Tue, 12 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/123482/ Ovarian cancer is a major cause for death of gynecological cancer patients. The efficacy of traditional surgery and chemotherapy is rather compromised and platinum-resistant cancer recurs. Finding new therapeutic targets is urgently needed to increase the survival rate and to improve life quality of patients with ovarian cancer. In the present work, phosphoproteomic analysis was carried out on untreated and gossypol-treated ovarian cancer cell line, HOC1a. We identified approximately 9750 phosphopeptides from 3030 phosphoproteins, which are involved in diverse cellular processes including cytoskeletal organization, RNA and nucleotide binding, and cell cycle regulation. Upon gossypol treatment, changes in phosphorylation of twenty-nine proteins including YAP1 and AKAP12 were characterized. Western blotting and qPCR analysis were used to determine expression levels of proteins in YAP1-related Hippo pathway showing that gossypol induced upregulation of LATS1, which phosphorylates YAP1 at Ser 61. Furthermore, our data showed that gossypol targets the actin cytoskeletal organization through mediating phosphorylation states of actin-binding proteins. Taken together, our data provide valuable information to understand effects of gossypol on protein phosphorylation and apoptosis of ovarian cancer cells. Lixu Jin, Yuling Chen, Xinlin Mu, Qingquan Lian, Haiyun Deng, and Renshan Ge Copyright © 2014 Lixu Jin et al. All rights reserved. Laboratory Medicine 2014 Mon, 11 Aug 2014 08:22:10 +0000 http://www.hindawi.com/journals/bmri/2014/342418/ Mina Hur, Patrizia Cardelli, and Giulio Mengozzi Copyright © 2014 Mina Hur et al. All rights reserved. Natural Product Polyamines That Inhibit Human Carbonic Anhydrases Tue, 05 Aug 2014 09:48:15 +0000 http://www.hindawi.com/journals/bmri/2014/374079/ Natural product compound collections have proven an effective way to access chemical diversity and recent findings have identified phenolic, coumarin, and polyamine natural products as atypical chemotypes that inhibit carbonic anhydrases (CAs). CA enzymes are implicated as targets of variable drug therapeutic classes and the discovery of selective, drug-like CA inhibitors is essential. Just two natural product polyamines, spermine and spermidine, have until now been investigated as CA inhibitors. In this study, five more complex natural product polyamines 1–5, derived from either marine sponge or fungi, were considered for inhibition of six different human CA isozymes of interest in therapeutic drug development. All compounds share a simple polyamine core fragment, either spermine or spermidine, yet display substantially different structure activity relationships for CA inhibition. Notably, polyamines 1–5 were submicromolar inhibitors of the cancer drug target CA IX, this is more potent than either spermine or spermidine. Rohan A. Davis, Daniela Vullo, Claudiu T. Supuran, and Sally-Ann Poulsen Copyright © 2014 Rohan A. Davis et al. All rights reserved. Decoding Amyotrophic Lateral Sclerosis: Discovery of Novel Disease-Related Biomarkers and Future Perspectives in Neurodegeneration Mon, 04 Aug 2014 09:37:49 +0000 http://www.hindawi.com/journals/bmri/2014/629630/ Ana Cristina Calvo, Pierre-François Pradat, Deise M. F. Mendonça, and Raquel Manzano Copyright © 2014 Ana Cristina Calvo et al. All rights reserved. Synthesis and In Vitro Inhibition Effect of New Pyrido[2,3-d]pyrimidine Derivatives on Erythrocyte Carbonic Anhydrase I and II Mon, 04 Aug 2014 08:18:45 +0000 http://www.hindawi.com/journals/bmri/2014/594879/ In vitro inhibition effects of indolylchalcones and new pyrido[2,3-d]pyrimidine derivatives on purified human carbonic anhydrase I and II (hCA I and II) were investigated by using CO2 as a substrate. The results showed that all compounds inhibited the hCA I and hCA II enzyme activities. Among all the synthesized compounds, 7e ( µM) was found to be the most active compound for hCA I inhibitory activity and 5g ( µM) showed the highest hCA II inhibitory activity. Structure-activity relationships study showed that indolylchalcone derivatives have higher inhibitory activities than pyrido[2,3-d]pyrimidine derivatives on hCA I and hCA II. Additionally, methyl group bonded to uracil ring increases inhibitory activities on both hCA I and hCA II. Hilal Kuday, Fatih Sonmez, Cigdem Bilen, Emre Yavuz, Nahit Gençer, and Mustafa Kucukislamoglu Copyright © 2014 Hilal Kuday et al. All rights reserved. Amyotrophic Lateral Sclerosis: A Focus on Disease Progression Sun, 03 Aug 2014 09:31:32 +0000 http://www.hindawi.com/journals/bmri/2014/925101/ Since amyotrophic lateral sclerosis (ALS) was discovered and described in 1869 as a neurodegenerative disease in which motor neuron death is induced, a wide range of biomarkers have been selected to identify therapeutic targets. ALS shares altered molecular pathways with other neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s diseases. However, the molecular targets that directly influence its aggressive nature remain unknown. What is the first link in the neurodegenerative chain of ALS that makes this disease so peculiar? In this review, we will discuss the progression of the disease from the viewpoint of the potential biomarkers described to date in human and animal model samples. Finally, we will consider potential therapeutic strategies for ALS treatment and future, innovative perspectives. Ana C. Calvo, Raquel Manzano, Deise M. F. Mendonça, María J. Muñoz, Pilar Zaragoza, and Rosario Osta Copyright © 2014 Ana C. Calvo et al. All rights reserved. Peptide-Ligand Binding Modeling of siRNA with Cell-Penetrating Peptides Thu, 24 Jul 2014 11:26:49 +0000 http://www.hindawi.com/journals/bmri/2014/257040/ The binding affinity of a series of cell-penetrating peptides (CPP) was modeled through docking and making use of the number of intermolecular hydrogen bonds, lipophilic contacts, and the number of sp3 molecular orbital hybridization carbons. The new ranking of the peptides is consistent with the experimentally determined efficiency in the downregulation of luciferase activity, which includes the peptides’ ability to bind and deliver the siRNA into the cell. The predicted structures of the complexes of peptides to siRNA were stable throughout 10 ns long, explicit water molecular dynamics simulations. The stability and binding affinity of peptide-siRNA complexes was related to the sidechains and modifications of the CPPs, with the stearyl and quinoline groups improving affinity and stability. The reranking of the peptides docked to siRNA, together with explicit water molecular dynamics simulations, appears to be well suited to describe and predict the interaction of CPPs with siRNA. Alfonso T. García-Sosa, Indrek Tulp, Kent Langel, and Ülo Langel Copyright © 2014 Alfonso T. García-Sosa et al. All rights reserved. Aaptamines from the Marine Sponge Aaptos sp. Display Anticancer Activities in Human Cancer Cell Lines and Modulate AP-1-, NF-κB-, and p53-Dependent Transcriptional Activity in Mouse JB6 Cl41 Cells Wed, 23 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/469309/ Aaptamine (8,9-dimethoxy-1H-benzo[de][1,6]naphthyridine) is a marine natural compound possessing antioxidative, antimicrobial, antifungal, and antiretroviral activity. Earlier, we have found that aaptamine and its derivatives demonstrate equal anticancer effects against the human germ cell cancer cell lines NT2 and NT2-R and cause some changes in the proteome of these cells. In order to explore further the mechanism of action of aaptamine and its derivatives, we studied the effects of aaptamine (1), demethyl(oxy)aaptamine (2), and isoaaptamine (3) on human cancer cell lines and on AP-1-, NF-κB-, and p53-dependent transcriptional activity in murine JB6 Cl41 cells. We showed that compounds 1–3 demonstrate anticancer activity in THP-1, HeLa, SNU-C4, SK-MEL-28, and MDA-MB-231 human cancer cell lines. Additionally, all compounds were found to prevent EGF-induced neoplastic transformation of murine JB6 Cl41 cells. Nuclear factors AP-1, NF-κB, and p53 are involved in the cellular response to high and nontoxic concentrations of aaptamine alkaloids 1–3. Furthermore, inhibition of EGF-induced JB6 cell transformation, which is exerted by the compounds 1–3 at low nontoxic concentrations of 0.7–2.1 μM, cannot be explained by activation of AP-1 and NF-κB. Sergey A. Dyshlovoy, Sergey N. Fedorov, Larisa K. Shubina, Alexandra S. Kuzmich, Carsten Bokemeyer, Gunhild Keller-von Amsberg, and Friedemann Honecker Copyright © 2014 Sergey A. Dyshlovoy et al. All rights reserved. Changes in Biochemical Characteristics and Activities of Ripening Associated Enzymes in Mango Fruit during the Storage at Different Temperatures Tue, 22 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/232969/ As a part of the study to explore the possible strategy for enhancing the shelf life of mango fruits, we investigated the changes in biochemical parameters and activities of ripening associated enzymes of Ashwina hybrid mangoes at 4-day regular intervals during storage at −10°C, 4°C, and °C. Titratable acidity, vitamin C, starch content, and reducing sugar were higher at unripe state and gradually decreased with the increasing of storage time at all storage temperatures while phenol content, total soluble solid, total sugar, and nonreducing sugar contents gradually increased. The activities of amylase, -mannosidase, -glucosidase, and invertase increased sharply within first few days and decreased significantly in the later stage of ripening at °C. Meanwhile polyphenol oxidase, -galactosidase, and -hexosaminidase predominantly increased significantly with the increasing days of storage till later stage of ripening. At −10°C and 4°C, the enzymes as well as carbohydrate contents of storage mango changed slightly up to 4 days and thereafter the enzyme became fully dormant. The results indicated that increase in storage temperature and time correlated with changes in biochemical parameters and activities of glycosidases suggested the suppression of -galactosidase and -hexosaminidase might enhance the shelf life of mango fruits. Md. Anowar Hossain, Md. Masud Rana, Yoshinobu Kimura, and Hairul Azman Roslan Copyright © 2014 Md. Anowar Hossain et al. All rights reserved. Protective Effect of Ethanolic Extract of Tabernaemontana divaricata (L.) R. Br. against DEN and Fe NTA Induced Liver Necrosis in Wistar Albino Rats Thu, 17 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/240243/ This study is an attempt to evaluate the hepatoprotective activity of Tabernaemontana divaricata against DEN and Fe NTA induced liver necrosis in rats. Ethanolic extract of the whole plant of Tabernaemontana divaricata at doses of 200 and 400 mg/kg body weight and 5-fluorouracil (standard drug) was orally administered to male Wistar Albino rats once daily for 24 weeks, simultaneously treated with the carcinogen DEN and Fe NTA. In simultaneously treated animals, the plant extract significantly decreased the levels of uric acid, bilirubin, AST, ALT, and ALP in serum and increased the levels of liver marker enzymes in liver. Treatment with the extracts resulted in a significant increase in the levels of antioxidants accompanied by a marked reduction in the levels of malondialdehyde when compared to DEN and Fe NTA treated group. When compared with 200 mg/kg bw rats, 400 mg/kg bw rats and 5-fluorouracil treated rats showed better results in all the parameters. The histopathological studies confirmed the protective effects of extract against DEN and Fe NTA induced liver necrosis. Thus, it could be concluded that the use of Tabernaemontana divaricata extract in the treatment of carcinogen induced hepatic necrosis. Kannappan Poornima, Palanisamy Chella Perumal, and Velliyur Kanniappan Gopalakrishnan Copyright © 2014 Kannappan Poornima et al. All rights reserved. Effect of Cocoa Butter and Sunflower Oil Supplementation on Performance, Immunoglobulin, and Antioxidant Vitamin Status of Rats Wed, 16 Jul 2014 15:51:28 +0000 http://www.hindawi.com/journals/bmri/2014/606575/ This study investigated the effects of cocoa butter and sunflower oil alone and in combination on performance, some biochemical parameters, immunoglobulin, and antioxidant vitamin status in Wistar rats. Forty-eight male rats were assigned to four groups, consisting of 12 rats with 3 replicates. Control received balanced rat diet without oil, cocoa butter group received 3.5% cocoa butter, sunflower oil group received 3.5% sunflower oil, the last group received 1.75% sunflower oil + 1.75% cocoa butter supplementation in the rat diet for 8 weeks. The total feed consumption in sunflower oil group was statistically lower than in the other groups. The serum creatinine level was decreased in cocoa butter group compared to control. Triglyceride and VLDL cholesterol levels were decreased in only sunflower oil and only cocoa butter groups as compared to control. The level of Ig M was statistically lower in cocoa butter and cocoa butter + sunflower oil groups than in control and sunflower oil groups. There were no statistically important difference in vitamin concentrations among trial groups. It was concluded that the supplementation of cocoa butter in diet decreased Ig M level, while the supplementation of cocoa butter and sunflower oil alone decreased the triglyceride and VLDL cholesterol levels. Ebru Yıldırım, Miyase Çınar, İlkay Yalçınkaya, Hüsamettin Ekici, Nurgül Atmaca, and Enes Güncüm Copyright © 2014 Ebru Yıldırım et al. All rights reserved. Physiological and Biochemical Changes in Brassica juncea Plants under Cd-Induced Stress Tue, 15 Jul 2014 12:56:40 +0000 http://www.hindawi.com/journals/bmri/2014/726070/ Plants of Brassica juncea L. var. RLC-1 were exposed for 30 days to different concentrations (0, 0.2, 0.4, and 0.6 mM) of cadmium (Cd) to analyze the Cd uptake, H2O2 content, hormonal profiling, level of photosynthetic pigments (chlorophyll, carotenoid, and flavonoid), gaseous exchange parameters (photosynthetic rate, vapour pressure deficit, intercellular CO2 concentration, and intrinsic mesophyll rate), antioxidative enzymes (superoxide dismutase, polyphenol oxidase, glutathione-S transferase, and glutathione peroxidase), antioxidant assays (DPPH, ABTS, and total phenolic content), and polyphenols. Results of the present study revealed the increased H2O2 content and Cd uptake with increasing metal doses. UPLC analysis of plants showed the presence of various polyphenols. Gaseous exchange measurements were done by infrared gas analyzer (IRGA), which was negatively affected by metal treatment. In addition, LC/MS study showed the variation in the expression of plant hormones. Level of photosynthetic pigments and activities of antioxidative enzymes were altered significantly in response to metal treatment. In conclusion, the antioxidative defence system of plants got activated due to heavy metal stress, which protects the plants by scavenging free radicals. Dhriti Kapoor, Satwinderjeet Kaur, and Renu Bhardwaj Copyright © 2014 Dhriti Kapoor et al. All rights reserved. Depletion of Arginine by Recombinant Arginine Deiminase Induces nNOS-Activated Neurotoxicity in Neuroblastoma Cells Mon, 14 Jul 2014 09:25:45 +0000 http://www.hindawi.com/journals/bmri/2014/589424/ The abnormal regulation of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI) is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown. Addressing this issue is important for evaluating the potential application of rADI in neurodegenerative diseases. SH-SY5Y cells were treated with N-methyl-D-aspartic acid (NMDA) to activate nNOS. NMDA increased NO production by 39.7 ± 3.9% via nNOS under arginine-containing conditions, but there was no significant increase in both arginine-free and rADI pretreated arginine-containing (citrulline) buffer. Subsequently, neither NMDA nor rADI alone caused cytotoxicity, whereas cotreatment with NMDA and rADI resulted in dissipation of the cell mitochondrial membrane potential and decreased cell viability. The mechanism of rADI cytotoxicity in the presence of NMDA is caused by the inhibition of NO production via nNOS mediated by the NMDA receptor, which was abolished when extracellular arginine was absent, even in the presence of citrulline. rADI not only reduced NO production but also caused cellular toxicity in nNOS-activated SH-SY5Y cells, suggesting a dual role for rADI in NOS-mediated neurotoxicity. Shan-Erh Lin, Fe-Lin Lin Wu, Ming-Feng Wei, and Li-Jiuan Shen Copyright © 2014 Shan-Erh Lin et al. All rights reserved. Profiling of Biomarkers for the Exposure of Polycyclic Aromatic Hydrocarbons: Lamin-A/C Isoform 3, Poly[ADP-ribose] Polymerase 1, and Mitochondria Copy Number Are Identified as Universal Biomarkers Thu, 10 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/605135/ This study investigated the profiling of polycyclic aromatic hydrocarbon- (PAH-) induced genotoxicity in cell lines and zebrafish. Each type of cells displayed different proportionality of apoptosis. Mitochondrial DNA (mtDNA) copy number was dramatically elevated after 5-day treatment of fluoranthene and pyrene. The notable deregulated proteins for PAHs exposure were displayed as follows: lamin-A/C isoform 3 and annexin A1 for benzopyrene; lamin-A/C isoform 3 and DNA topoisomerase 2-alpha for pentacene; poly[ADP-ribose] polymerase 1 (PARP-1) for fluoranthene; and talin-1 and DNA topoisomerase 2-alpha for pyrene. Among them, lamin-A/C isoform 3 and PARP-1 were further confirmed using mRNA and protein expression study. Obvious morphological abnormalities including curved backbone and cardiomegaly in zebrafish were observed in the 54 hpf with more than 400 nM of benzopyrene. In conclusion, the change of mitochondrial genome (increased mtDNA copy number) was closely associated with PAH exposure in cell lines and mesenchymal stem cells. Lamin-A/C isoform 3, talin-1, and annexin A1 were identified as universal biomarkers for PAHs exposure. Zebrafish, specifically at embryo stage, showed suitable in vivo model for monitoring PAHs exposure to hematopoietic tissue and other organs. Hwan-Young Kim, Hye-Ran Kim, Min-Gu Kang, Nguyen Thi Dai Trang, Hee-Jo Baek, Jae-Dong Moon, Jong-Hee Shin, Soon-Pal Suh, Dong-Wook Ryang, Hoon Kook, and Myung-Geun Shin Copyright © 2014 Hwan-Young Kim et al. All rights reserved. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases Thu, 03 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/474296/ An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson’s disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review. Antonio Paoli, Antonino Bianco, Ernesto Damiani, and Gerardo Bosco Copyright © 2014 Antonio Paoli et al. All rights reserved. Optimization of Alkaline Extraction and Bioactivities of Polysaccharides from Rhizome of Polygonatum odoratum Tue, 01 Jul 2014 12:03:01 +0000 http://www.hindawi.com/journals/bmri/2014/504896/ The present study is to explore the optimal extraction parameters, antioxidant activity, and antimicrobial activity of alkaline soluble polysaccharides from rhizome of Polygonatum odoratum. The optimal extraction parameters were determined as the following: NaOH concentration (A) 0.3 M, temperature (B) , ratio of NaOH to solid (C) 10-fold, and extraction time (D) 4 h, in which ratio of NaOH to solid was a key factor. The order of the factors was ratio of NaOH to solid (fold, C) > extraction temperature (, B) > NaOH concentration (M, A) > extraction time (h, D). The monosaccharide compositions of polysaccharides from P. odoratum were rhamnose, mannose, xylose, and arabinose with the molecular ratio of 31.78, 31.89, 11.11, and 1.00, respectively. The reducing power, the 1, 1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging rate, the hydroxyl radicals scavenging rate, and the inhibition rate to polyunsaturated fatty acid (PUFA) peroxidation of the alkaline soluble polysaccharides from P. odoratum at 1 mg/mL were 9.81%, 52.84%, 19.22%, and 19.42% of ascorbic acid at the same concentration, respectively. They also showed antimicrobial activity against pathogenic bacteria Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, and Escherichia coli. Yong Chen, Luoyi Yin, Xuejiao Zhang, Yan Wang, Qiuzhi Chen, Chenzhong Jin, Yihong Hu, and Jihua Wang Copyright © 2014 Yong Chen et al. All rights reserved. Biocatalytic Synthesis of Flavor Ester “Pentyl Valerate” Using Candida rugosa Lipase Immobilized in Microemulsion Based Organogels: Effect of Parameters and Reusability Tue, 01 Jul 2014 11:13:23 +0000 http://www.hindawi.com/journals/bmri/2014/353845/ Pentyl valerate was synthesized biocatalytically using Candida rugosa lipase (CRL) immobilized in microemulsion based organogels (MBGs). The optimum conditions were found to be pH 7.0, temperature of 37°C, ratio of concentration of water to surfactant (Wo) of 60, and the surfactant sodium bis-2-(ethylhexyl)sulfosuccinate (AOT) for MBG preparation. Although kinetic studies revealed that the enzyme in free form had high affinity towards substrates ( = 23.2 mM for pentanol and 76.92 mM for valeric acid) whereas, after immobilization, the values increased considerably (74.07 mM for pentanol and 83.3 mM for valeric acid) resulting in a slower reaction rate, the maximum conversion was much higher in case of immobilized enzyme (~99%) as compared to free enzyme (~19%). Simultaneous effects of important parameters were studied using response surface methodology (RSM) conjugated with Box-Behnken design (BBD) with five variables (process parameters), namely, enzyme concentration, initial water content (Wo), solvent used for MBG preparation, substrate ratio and time, and response as the final product formation, that is, pentyl valerate (%). The MBGs were reused for 10 consecutive cycles for ester synthesis. Efficacy of AOT/isooctane as dehydrating agent for extracting excess water from MBGs was found to exert a positive effect on the esterification reaction. Tripti Raghavendra, Nilam Panchal, Jyoti Divecha, Amita Shah, and Datta Madamwar Copyright © 2014 Tripti Raghavendra et al. All rights reserved. Expression of IMPDH mRNA after Mycophenolate Administration in Male Volunteers Tue, 01 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/870209/ Background. Mycophenolic acid (MPA) is the first-line antimetabolic immunosuppressants used in solid organ transplantation. Here, in vivo expressions of the pharmacodynamic marker IMPDH mRNA were analyzed to investigate its usefulness in assessing drug effects. Materials and Methods. Six healthy male volunteers who had the same genotype for genes known to be associated with drug metabolism and effects were selected to remove the confounding effect of these genotypes. Mycophenolate mofetil (MMF, 1 g) was administered once to each subject, and blood samples were collected with certain interval before and after MMF administration to measure lymphocyte expression levels of IMPDH1 and IMPDH2 mRNA. One week later, the experiment was repeated. Results. Whereas IMPDH1 mRNA expression was stable, IMPDH2 mRNA expression showed 2 peaks in the first week. Both IMPDH1 and IMPDH2 mRNA expression in the second week remarkably decreased from the first week. Conclusion. The temporary increase in IMPDH2 mRNA expression in the first week might be due to a reactive reaction against the plasma MPA concentration. In the second week, the intracellular guanosine monophosphate might be depleted, rendering IMPDH2 mRNA synthesis inactive. When MPA is regularly administered to reach a steady state, the IMPDH2 mRNA expression may be kept low and may effectively reflect biological responses regardless of drug intake. Sollip Kim, Woochang Lee, Sail Chun, Tae Hyun Um, and Won-Ki Min Copyright © 2014 Sollip Kim et al. All rights reserved. Vitamin D Signaling in Myogenesis: Potential for Treatment of Sarcopenia Mon, 30 Jun 2014 10:58:47 +0000 http://www.hindawi.com/journals/bmri/2014/121254/ Muscle mass and strength progressively decrease with age, which results in a condition known as sarcopenia. Sarcopenia would lead to physical disability, poor quality of life, and death. Therefore, much is expected of an effective intervention for sarcopenia. Epidemiologic, clinical, and laboratory evidence suggest an effect of vitamin D on muscle function. However, the precise molecular and cellular mechanisms remain to be elucidated. Recent studies suggest that vitamin D receptor (VDR) might be expressed in muscle fibers and vitamin D signaling via VDR plays a role in the regulation of myoblast proliferation and differentiation. Understanding how vitamin D signaling contributes to myogenesis will provide a valuable insight into an effective nutritional strategy to moderate sarcopenia. Here we will summarize the current knowledge about the effect of vitamin D on skeletal muscle and myogenic cells and discuss the potential for treatment of sarcopenia. Akira Wagatsuma and Kunihiro Sakuma Copyright © 2014 Akira Wagatsuma and Kunihiro Sakuma. All rights reserved. Usefulness of Combining Galectin-3 and BIVA Assessments in Predicting Short- and Long-Term Events in Patients Admitted for Acute Heart Failure Mon, 30 Jun 2014 10:14:13 +0000 http://www.hindawi.com/journals/bmri/2014/983098/ Introduction. Acute heart failure (AHF) is associated with a higher risk for the occurrence of rehospitalization and death. Galectin-3 (GAL3) is elevated in AHF patients and is an indicator in predicting short-term mortality. The total body water using bioimpedance vector analysis (BIVA) is able to identify mortality within AHF patients. The aim of this study was to evaluate the short- and long-term predictive value of GAL3, BIVA, and the combination of both in AHF patients in Emergency Department (ED). Methods. 205 ED patients with AHF were evaluated by testing for B type natriuretic peptide (BNP) and GAL3. The primary endpoint was death and rehospitalization at 30, 60, 90, and 180 days and 12 and 18 months. AHF patients were evaluated at the moment of ED arrival with clinical judgment and GAL3 and BIVA measurement. Results. GAL3 level was significantly higher in patients >71 years old, and with  cc/min. The area under the curve (AUC) of , GAL3 and BIVA for death and rehospitalization both when considered in total and when considered serially for the follow-up period showed that the combination has a better prognostic value. Kaplan-Meier survival curve for GAL3 values >17.8 ng/mL shows significant survival difference. At multivariate Cox regression analysis GAL3 is an independent variable to predict death + rehospitalization with a value of 32.24 ng/mL at 30 days (). Conclusion. In patients admitted for AHF an early assessment of GAL3 and BIVA seems to be useful in identifying patients at high risk for death and rehospitalization at short and long term. Combining the biomarker and the device could be of great utility since they monitor the severity of two pathophysiological different mechanisms: heart fibrosis and fluid overload. Benedetta De Berardinis, Laura Magrini, Giorgio Zampini, Benedetta Zancla, Gerardo Salerno, Patrizia Cardelli, Enrico Di Stasio, Hanna K. Gaggin, Arianna Belcher, Blair A. Parry, John T. Nagurney, James L. Januzzi Jr., and Salvatore Di Somma Copyright © 2014 Benedetta De Berardinis et al. All rights reserved. Synthesis and Evaluation of Novel Pyrroles and Pyrrolopyrimidines as Anti-Hyperglycemic Agents Thu, 26 Jun 2014 10:20:31 +0000 http://www.hindawi.com/journals/bmri/2014/249780/ A series of pyrrole and pyrrolopyrimidine derivatives were examined for their in vivo antihyperglycemic activity. Compounds Ia–c,e, and IVg showed promising antihyperglycemic activity equivalent to a well-known standard antihyperglycemic drug, Glimepiride (Amaryl, 4 mg/kg). In this paper, we examine and discuss the structure-activity relationships and antihyperglycemic activity of these compounds. M. S. Mohamed, S. A. Ali, D. H. A. Abdelaziz, and Samar S. Fathallah Copyright © 2014 M. S. Mohamed et al. All rights reserved. The Landscape of Protein Biomarkers Proposed for Periodontal Disease: Markers with Functional Meaning Thu, 26 Jun 2014 08:06:01 +0000 http://www.hindawi.com/journals/bmri/2014/569632/ Periodontal disease (PD) is characterized by a deregulated inflammatory response which fails to resolve, activating bone resorption. The identification of the proteomes associated with PD has fuelled biomarker proposals; nevertheless, many questions remain. Biomarker selection should favour molecules representing an event which occurs throughout the disease progress. The analysis of proteome results and the information available for each protein, including its functional role, was accomplished using the OralOme database. The integrated analysis of this information ascertains if the suggested proteins reflect the cell and/or molecular mechanisms underlying the different forms of periodontal disease. The evaluation of the proteins present/absent or with very different concentrations in the proteome of each disease state was used for the identification of the mechanisms shared by different PD variants or specific to such state. The information presented is relevant for the adequate design of biomarker panels for PD. Furthermore, it will open new perspectives and help envisage future studies targeted to unveil the functional role of specific proteins and help clarify the deregulation process in the PD inflammatory response. Nuno Rosa, Maria José Correia, Joel P. Arrais, Nuno Costa, José Luís Oliveira, and Marlene Barros Copyright © 2014 Nuno Rosa et al. All rights reserved. Redox Signaling in Degenerative Diseases: From Molecular Mechanisms to Health Implications Wed, 25 Jun 2014 09:17:23 +0000 http://www.hindawi.com/journals/bmri/2014/245761/ Cristina Angeloni, Tullia Maraldi, and David Vauzour Copyright © 2014 Cristina Angeloni et al. All rights reserved. Comparison of Commercial Genetic-Testing Services in Korea with 23andMe Service Wed, 25 Jun 2014 05:47:25 +0000 http://www.hindawi.com/journals/bmri/2014/539151/ Introduction. Genetic testing services for disease prediction, drug responses, and traits are commercially available by several companies in Korea. However, there has been no evaluation study for the accuracy and usefulness of these services. We aimed to compare two genetic testing services popular in Korea with 23andMe service in the United States. Materials and Methods. We compared the results of two persons (one man and one woman) serviced by Hellogene Platinum (Theragen Bio Institute), DNAGPS Optimus (DNAlink), and 23andMe service. Results. Among 3 services, there were differences in the estimation of relative risks for the same disease. For lung cancer, the range of relative risk was from 0.9 to 2.09. These differences were thought to be due to the differences of applied single nucleotide polymorphisms (SNPs) in each service for the calculation of risk. Also, the algorithm and population database would have influence on the estimation of relative disease risks. The concordance rate of SNP calls between DNAGPS Optimus and 23andMe services was 100% (30/30). Conclusions. Our study showed differences in disease risk estimations among three services, although they gave good concordance rate for SNP calls. We realized that the genetic services need further evaluation and standardization, especially in disease risk estimation algorithm. Sollip Kim, Ki-Won Eom, Chong-Rae Cho, and Tae Hyun Um Copyright © 2014 Sollip Kim et al. All rights reserved. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts Tue, 24 Jun 2014 07:11:40 +0000 http://www.hindawi.com/journals/bmri/2014/608053/ This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention. Urszula Gawlik-Dziki, Michał Świeca, Dariusz Dziki, Łukasz Sęczyk, Urszula Złotek, Renata Różyło, Kinga Kaszuba, Damian Ryszawy, and Jarosław Czyż Copyright © 2014 Urszula Gawlik-Dziki et al. All rights reserved. Identification of Phenolic Acids and Flavonoids in Monofloral Honey from Bangladesh by High Performance Liquid Chromatography: Determination of Antioxidant Capacity Tue, 24 Jun 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/737490/ The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties. Mohammed Moniruzzaman, Chua Yung An, Pasupuleti Visweswara Rao, Mohammad Nurul Islam Hawlader, Siti Amirah Binti Mohd Azlan, Siti Amrah Sulaiman, and Siew Hua Gan Copyright © 2014 Mohammed Moniruzzaman et al. All rights reserved. Oxygen Radicals Elicit Paralysis and Collapse of Spinal Cord Neuron Growth Cones upon Exposure to Proinflammatory Cytokines Mon, 23 Jun 2014 08:11:50 +0000 http://www.hindawi.com/journals/bmri/2014/191767/ A persistent inflammatory and oxidative stress is a hallmark of most chronic CNS pathologies (Alzheimer’s (ALS)) as well as the aging CNS orchestrated by the proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). Loss of the integrity and plasticity of neuronal morphology and connectivity comprises an early step in neuronal degeneration and ultimate decline of cognitive function. We examined in vitro whether TNFα or IL-1β impaired morphology and motility of growth cones in spinal cord neuron cultures. TNFα and IL-1β paralyzed growth cone motility and induced growth cone collapse in a dose-dependent manner reflected by complete attenuation of neurite outgrowth. Scavenging reactive oxygen species (ROS) or inhibiting NADPH oxidase activity rescued loss of neuronal motility and morphology. TNFα and IL-1β provoked rapid, NOX-mediated generation of ROS in advancing growth cones, which preceded paralysis of motility and collapse of morphology. Increases in ROS intermediates were accompanied by an aberrant, nonproductive reorganization of actin filaments. These findings suggest that NADPH oxidase serves as a pivotal source of oxidative stress in neurons and together with disruption of actin filament reorganization contributes to the progressive degeneration of neuronal morphology in the diseased or aging CNS. Thomas B. Kuhn Copyright © 2014 Thomas B. Kuhn. All rights reserved. Hematological and Biochemical Markers of Iron Status in a Male, Young, Physically Active Population Sun, 22 Jun 2014 08:12:07 +0000 http://www.hindawi.com/journals/bmri/2014/349182/ The aim of this study was to establish reference intervals (RIs) for the hemogram and iron status biomarkers in a physically active population. The study population included male volunteers () with an average age of 19 ± 1 years who had participated in a regular and controlled exercise program for four months. Blood samples were collected to determine hematological parameters using a Sysmex XE-5000 analyzer (Sysmex, Kobe, Japan). Iron, total iron-binding capacity (TIBC), transferrin saturation and ferritin, and high-sensitivity C-reactive protein (CRP) concentrations in serum samples were measured using commercial kits (Roche Diagnostics, GmbH, Mannheim, Germany) and a Roche/Hitachi 902 analyzer. The RIs were established using the RefVal program 4.1b. The leucocyte count, TIBC, and CRP and ferritin concentrations exhibited higher RIs compared with those in a nonphysically active population. Thirty volunteers (outliers) were removed from the reference population due to blood abnormalities. Among the outliers, 46% exhibited higher CRP concentrations and lower concentrations of iron and reticulocyte hemoglobin compared with the nonphysically active population (). Our results showed that it is important to establish RIs for certain laboratory parameters in a physically active population, especially for tests related to the inflammatory response and iron metabolism. Lázaro Alessandro Soares Nunes, Helena Zerlotti W. Grotto, René Brenzikofer, and Denise Vaz Macedo Copyright © 2014 Lázaro Alessandro Soares Nunes et al. All rights reserved. Current Approaches for Predicting a Lack of Response to Anti-EGFR Therapy in KRAS Wild-Type Patients Wed, 18 Jun 2014 11:27:27 +0000 http://www.hindawi.com/journals/bmri/2014/591867/ Targeting epidermal growth factor receptor (EGFR) has been one of the most effective colorectal cancer strategies. Anti-EGFR antibodies function by binding to the extracellular domain of EGFR, preventing its activation, and ultimately providing clinical benefit. KRAS mutations in codons 12 and 13 are recognized prognostic and predictive biomarkers that should be analyzed at the clinic prior to the administration of anti-EGFR therapy. However, still an important fraction of KRAS wild-type patients do not respond to the treatment. The identification of additional genetic determinants of primary or secondary resistance to EGFR targeted therapy for further improving the selection of patients is urgent. Herein, we review the latest published literature highlighting the most important genes that may predict resistance to anti-EGFR monoclonal antibodies in colorectal cancer patients. According to the available findings, the evaluation of BRAF, NRAS, PIK3CA, and PTEN status could be the right strategy to select patients who are likely to respond to anti-EGFR therapies. In the future, the combination of those biomarkers will help establish consensus that can be introduced into clinical practice. Tze-Kiong Er, Chih-Chieh Chen, Luis Bujanda, and Marta Herreros-Villanueva Copyright © 2014 Tze-Kiong Er et al. All rights reserved. Purification and Characterization of Catalase from Marine Bacterium Acinetobacter sp. YS0810 Wed, 18 Jun 2014 09:11:27 +0000 http://www.hindawi.com/journals/bmri/2014/409626/ The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT) was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability. Xinhua Fu, Wei Wang, Jianhua Hao, Xianglin Zhu, and Mi Sun Copyright © 2014 Xinhua Fu et al. All rights reserved. Biopolymeric Formulations for Biocatalysis and Biomedical Applications Tue, 17 Jun 2014 11:15:55 +0000 http://www.hindawi.com/journals/bmri/2014/418097/ Three gel disks formulations prepared using chitosan (Chito) or polyethylenimine (PEI) followed by glutaraldehyde were prepared for biocatalysis and biomedical applications. The carriers have been used to immobilize lactase covalently and it was evaluated in terms of enzyme loading capacity and enzyme kinetics (km and Vmax). The Km of the Chito formulation was almost half that of the PEI formulations, which is favored in industries. On the other hand, the gel disks were evaluated in terms of their swelling kinetics and the gels’ morphology using SEM. The mechanism of the three gels’ swelling was also studied and it was found to be non-Fickian, where the mechanism of transport depends on both the diffusion and polymer relaxation, which are controlling the overall rate of water uptake. The Chito formulation was 2–5 folds and PEI formulations were 33–62 folds in terms of the swelling rate constant and the diffusion rate, respectively. These results were highly supported by the SEM. This study will help scientists to design the right polymer network for enzymes immobilization as well as control the surface area and the swelling power of the polymers for different applications such as drug delivery systems and tissue engineering. Magdy M. M. Elnashar and Tarek Kahil Copyright © 2014 Magdy M. M. Elnashar and Tarek Kahil. All rights reserved. The Study of Interactions between Active Compounds of Coffee and Willow (Salix sp.) Bark Water Extract Wed, 11 Jun 2014 14:13:04 +0000 http://www.hindawi.com/journals/bmri/2014/386953/ Coffee and willow are known as valuable sources of biologically active phytochemicals such as chlorogenic acid, caffeine, and salicin. The aim of the study was to determine the interactions between the active compounds contained in water extracts from coffee and bark of willow (Salix purpurea and Salix myrsinifolia). Raw materials and their mixtures were characterized by multidirectional antioxidant activities; however, bioactive constituents interacted with each other. Synergism was observed for ability of inhibition of lipid peroxidation and reducing power, whereas compounds able to scavenge ABTS radical cation acted antagonistically. Additionally, phytochemicals from willow bark possessed hydrophilic character and thermostability which justifies their potential use as an ingredient in coffee beverages. Proposed mixtures may be used in the prophylaxis or treatment of some civilization diseases linked with oxidative stress. Most importantly, strong synergism observed for phytochemicals able to prevent lipids against oxidation may suggest protective effect for cell membrane phospholipids. Obtained results indicate that extracts from bark tested Salix genotypes as an ingredient in coffee beverages can provide health promoting benefits to the consumers; however, this issue requires further study. Agata Durak and Urszula Gawlik-Dziki Copyright © 2014 Agata Durak and Urszula Gawlik-Dziki. All rights reserved. Novel Epoxy Activated Hydrogels for Solving Lactose Intolerance Wed, 11 Jun 2014 09:25:34 +0000 http://www.hindawi.com/journals/bmri/2014/817985/ “Lactose intolerance” is a medical problem for almost 70% of the world population. Milk and dairy products contain 5–10% w/v lactose. Hydrolysis of lactose by immobilized lactase is an industrial solution. In this work, we succeeded to increase the lactase loading capacity to more than 3-fold to 36.3 U/g gel using epoxy activated hydrogels compared to 11 U/g gel using aldehyde activated carrageenan. The hydrogel’s mode of interaction was proven by FTIR, DSC, and TGA. The high activity of the epoxy group was regarded to its ability to attach to the enzyme’s –SH, –NH, and –OH groups, whereas the aldehyde group could only bind to the enzyme’s –NH2 group. The optimum conditions for immobilization such as epoxy chain length and enzyme concentration have been studied. Furthermore, the optimum enzyme conditions were also deliberated and showed better stability for the immobilized enzyme and the Michaelis constants, and , were doubled. Results revealed also that both free and immobilized enzymes reached their maximum rate of lactose conversion after 2 h, albeit, the aldehyde activated hydrogel could only reach 63% of the free enzyme. In brief, the epoxy activated hydrogels are more efficient in immobilizing more enzymes than the aldehyde activated hydrogel. Magdy M. M. Elnashar and Mohamed E. Hassan Copyright © 2014 Magdy M. M. Elnashar and Mohamed E. Hassan. All rights reserved. Essential Amino Acids and Exercise Tolerance in Elderly Muscle-Depleted Subjects with Chronic Diseases: A Rehabilitation without Rehabilitation? Mon, 09 Jun 2014 07:43:21 +0000 http://www.hindawi.com/journals/bmri/2014/341603/ Exercise intolerance remains problematic in subjects with chronic heart failure (CHF) and/or chronic obstructive pulmonary disease (COPD). Recent studies show that supplemented essential amino acids (EAAs) may exert beneficial effects on CHF/COPD physical capacity. The results from 3 investigations (2 conducted on CHF and 1 on COPD subjects) served as the basis for this paper. The 3 studies consistently showed that elderly CHF and COPD improved exercise intolerance after 1–3 months of EAA supplementation (8 g/d). In CHF exercise capacity increased 18.7% to 23% (watts; bicycle test), and 12% to 22% (meters) in 6 min walking test. Moreover, patients reduced their resting plasma lactate levels (by 25%) and improved tissue insulin sensitivity by 16% (HOMA index). COPD subjects enjoyed similar benefits as CHF ones. They increased physical autonomy by 78.6% steps/day and decreased resting plasma lactate concentrations by 23%. EAA mechanisms explaining improved exercise intolerance could be increases in muscle aerobic metabolism, mass and function, and improvement of tissue insulin sensitivity (the latter only for the CHF population). These mechanisms could be accounted for by EAA’s intrinsic physiological activity which increases myofibrils and mitochondria genesis in skeletal muscle and myocardium and glucose control. Supplemented EAAs can improve the physical autonomy of subjects with CHF/COPD. Roberto Aquilani, Giuseppe D’Antona, Paola Baiardi, Arianna Gambino, Paolo Iadarola, Simona Viglio, Evasio Pasini, Manuela Verri, Annalisa Barbieri, and Federica Boschi Copyright © 2014 Roberto Aquilani et al. All rights reserved. Feleucins: Novel Bombinin Precursor-Encoded Nonapeptide Amides from the Skin Secretion of Bombina variegata Mon, 09 Jun 2014 07:33:11 +0000 http://www.hindawi.com/journals/bmri/2014/671362/ The first amphibian skin antimicrobial peptide (AMP) to be identified was named bombinin, reflecting its origin from the skin of the European yellow-bellied toad (Bombina variegata). Bombinins and their related peptides, the bombinin Hs, were subsequently reported from other bombinid toads. Molecular cloning of bombinin-encoding cDNAs from skin found that bombinins and bombinin Hs were coencoded on the same precursor proteins. Here, we report the molecular cloning of two novel cDNAs from a skin secretion-derived cDNA library of B. variegata whose open-reading frames each encode a novel bombinin (GIGGALLNVGKVALKGLAKGLAEHFANamide) and a C-terminally located single copy of a novel nonapeptide (FLGLLGGLLamide or FLGLIGSLLamide). These novel nonapeptides were named feleucin-BV1 and feleucin-BV2, respectively. The novel bombinin exhibited 89% identity to homologues from the toads, B. microdeladigitora and B. maxima. The feleucins exhibited no identity with any amphibian AMP archived in databases. Synthetic feleucins exhibited a weak activity against Staphylococcus aureus (128–256 mg/L) but feleucin-BV1 exhibited a synergistic action with the novel bombinin. The present report clearly demonstrates that the skin secretions of bombinid toads continue to represent a source of peptides of novel structure that could provide templates for the design of therapeutics. Bing Bai, Xiaojuan Hou, Lei Wang, Lilin Ge, Yu Luo, Chengbang Ma, Mei Zhou, Jinao Duan, Tianbao Chen, and Chris Shaw Copyright © 2014 Bing Bai et al. All rights reserved. Investigating hsp Gene Expression in Liver of Channa striatus under Heat Stress for Understanding the Upper Thermal Acclimation Mon, 09 Jun 2014 06:12:34 +0000 http://www.hindawi.com/journals/bmri/2014/381719/ Changes in hsp gene expression profiles in murrel Channa striatus experimentally exposed to temperature stress (36°C) for 4, 15, and 30 days were investigated; fish collected from aquaculture ponds and maintained in laboratory at the pond temperature (25 ± 1°C) served as control. Channa collected from a hot spring runoff (36°C) was included in the study to examine the hsp profiles beyond 30 days of exposure. Gene expression analyses of a battery of hsps in liver tissues were carried out by quantitative RT-PCR and protein expressions were analyzed by immunoblotting. hsps could be grouped into three clusters based on similarity in response to heat stress: hsp70, hsp78, and hsp60, whose transcript level continued to increase with duration of exposure; hsp90 and hsp110 that increased to a much higher level and then decreased; hsp27 and hsp47 that did not significantly vary as compared to control. The results suggest that Hsp70, Hsp78, and Hsp60 are involved in thermal acclimation and long term survival at high temperature. Fish living in the hot spring runoff appears to continuously express hsps that can be approximated by long term induction of hsps in farmed fish if temperature of their environment is raised to 36°C. Gopal Krishna Purohit, Arabinda Mahanty, Mrutyunjay Suar, Anil Prakash Sharma, Bimal Prasanna Mohanty, and Sasmita Mohanty Copyright © 2014 Gopal Krishna Purohit et al. All rights reserved. Comparison of Quasispecies Diversity of HCV between Chronic Hepatitis C and Hepatocellular Carcinoma by Ultradeep Pyrosequencing Thu, 05 Jun 2014 11:59:27 +0000 http://www.hindawi.com/journals/bmri/2014/853076/ Backgrounds. Hepatitis C virus (HCV) exists as population of closely related genetic variants known as quasispecies. HCV quasispecies diversity is strongly influenced by host immune pressure on virus. Quasispecies diversity is expected to decline as host immune response to HCV decreases over natural course of progressing from chronic hepatitis C (CHC) to hepatocellular carcinoma (HCC). Methods. Ultradeep pyrosequencing (UDPS) was used to evaluate degree of quasispecies diversity in 49 patients infected with HCV including 26 with CHC and 23 with HCC. Whole structural protein of HCV genome was subjected to UDPS. Results. Shannon’s indices for quasispecies diversity in HCV E1 were significantly lower in patients with HCC than in those with CHC. 14 amino acid positions differed significantly between two groups. Area under curve of ROC analysis for differentiating HCC from CHC was >0.8 for all of 14 amino acid positions. Conclusion. HCV quasispecies diversity as indicator of declining host immune functions was easily assessed by UDPS technology. Shannon’s indices in 14 amino acid positions were found to differentiate between patients with CHC and those with HCC. Our data propose that degree of HCV quasispecies measured by UDPS might be useful to predict progression of HCC in chronic HCV patients. Chang-Wook Park, Min-Chul Cho, Keumrock Hwang, Sun-Young Ko, Heung-Bum Oh, and Han Chu Lee Copyright © 2014 Chang-Wook Park et al. All rights reserved. Biomarkers of Metabolic Disorders: Diagnostic and Prognostic Values, and Insights into the Pathogenesis Thu, 05 Jun 2014 07:50:54 +0000 http://www.hindawi.com/journals/bmri/2014/586272/ Cheng Hu, Jiarui Wu, and Wei Jia Copyright © 2014 Cheng Hu et al. All rights reserved. The Cytotoxicity of Benzaldehyde Nitrogen Mustard-2-Pyridine Carboxylic Acid Hydrazone Being Involved in Topoisomerase IIα Inhibition Thu, 05 Jun 2014 07:39:04 +0000 http://www.hindawi.com/journals/bmri/2014/527042/ The antitumor property of iron chelators and aromatic nitrogen mustard derivatives has been well documented. Combination of the two pharmacophores in one molecule in drug designation is worth to be explored. We reported previously the syntheses and preliminary cytotoxicity evaluation of benzaldehyde nitrogen mustard pyridine carboxyl acid hydrazones (BNMPH) as extended study, more tumor cell lines (IC50 for HepG2: 26.1 ± 3.5 μM , HCT-116: 57.5 ± 5.3 μM, K562: 48.2 ± 4.0 μM, and PC-12: 19.4 ± 2.2 μM) were used to investigate its cytotoxicity and potential mechanism. In vitro experimental data showed that the BNMPH chelating Fe2+ caused a large number of ROS formations which led to DNA cleavage, and this was further supported by comet assay, implying that ROS might be involved in the cytotoxicity of BNMPH. The ROS induced changes of apoptosis related genes, but the TFR1 and NDRG1 metastatic genes were not obviously regulated, prompting that BNMPH might not be able to deprive Fe2+ of ribonucleotide reductase. The BNMPH induced S phase arrest was different from that of iron chelators (G1) and alkylating agents (G2). BNMPH also exhibited its inhibition of human topoisomerase IIα. Those revealed that the cytotoxic mechanism of the BNMPH could stem from both the topoisomerase II inhibition, ROS generation and DNA alkylation. Yun Fu, Sufeng Zhou, Youxun Liu, Yingli Yang, Xingzhi Sun, and Changzheng Li Copyright © 2014 Yun Fu et al. All rights reserved. Cartilage Dysfunction in ALS Patients as Side Effect of Motion Loss: 3D Mechano-Electrochemical Computational Model Tue, 03 Jun 2014 07:21:21 +0000 http://www.hindawi.com/journals/bmri/2014/179070/ Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease characterized by progressive weakness, muscle atrophy, and fasciculation. This fact results in a continuous degeneration and dysfunction of articular soft tissues. Specifically, cartilage is an avascular and nonneural connective tissue that allows smooth motion in diarthrodial joints. Due to the avascular nature of cartilage tissue, cells nutrition and by-product exchange are intermittently occurring during joint motions. Reduced mobility results in a change of proteoglycan density, osmotic pressure, and permeability of the tissue. This work aims to demonstrate the abnormal cartilage deformation in progressive immobilized articular cartilage for ALS patients. For this aim a novel 3D mechano-electrochemical model based on the triphasic theory for charged hydrated soft tissues is developed. ALS patient parameters such as tissue porosity, osmotic coefficient, and fixed anions were incorporated. Considering different mobility reduction of each phase of the disease, results predicted the degree of tissue degeneration and the reduction of its capacity for deformation. The present model can be a useful tool to predict the evolution of joints in ALS patients and the necessity of including specific cartilage protectors, drugs, or maintenance physical activities as part of the symptomatic treatment in amyotrophic lateral sclerosis. Sara Manzano, Eamonn A. Gaffney, Manuel Doblaré, and Mohamed Hamdy Doweidar Copyright © 2014 Sara Manzano et al. All rights reserved. Blood Biomarkers for Amyotrophic Lateral Sclerosis: Myth or Reality? Mon, 02 Jun 2014 08:02:37 +0000 http://www.hindawi.com/journals/bmri/2014/525097/ Amyotrophic lateral sclerosis (ALS) is a fatal condition primarily characterized by the selective loss of upper and lower motor neurons. At present, the diagnosis and monitoring of ALS is based on clinical examination, electrophysiological findings, medical history, and exclusion of confounding disorders. There is therefore an undeniable need for molecular biomarkers that could give reliable information on the onset and progression of ALS in clinical practice and therapeutic trials. From a practical point of view, blood offers a series of advantages, including easy handling and multiple testing at a low cost, that make it an ideal source of biomarkers. In this review, we revisited the findings of many studies that investigated the presence of systemic changes at the molecular and cellular level in patients with ALS. The results of these studies reflect the diversity in the pathological mechanisms contributing to disease (e.g., excitotoxicity, oxidative stress, neuroinflammation, metabolic dysfunction, and neurodegeneration, among others) and provide relatively successful evidence of the usefulness of a wide-ranging panel of molecules as potential biomarkers. More studies, hopefully internationally coordinated, would be needed, however, to translate the application of these biomarkers into benefit for patients. Laura Robelin and Jose Luis Gonzalez De Aguilar Copyright © 2014 Laura Robelin and Jose Luis Gonzalez De Aguilar. All rights reserved. Effects of the Angiotensin Receptor Blocker Olmesartan on Adipocyte Hypertrophy and Function in Mice with Metabolic Disorders Mon, 02 Jun 2014 05:45:39 +0000 http://www.hindawi.com/journals/bmri/2014/946492/ In the present study, we examined the therapeutic effects of olmesartan, an angiotensin II (Ang II) type 1 receptor (AT1R)-specific blocker, in genetically obese diabetic KKAy mice, a model of human metabolic disorders with visceral obesity, with a focus on an olmesartan effect on the adipose tissue. Olmesartan treatment (3 mg/kg per day) for 4 weeks significantly lowered systolic blood pressure but did not affect body weight during the study period in KKAy mice. However, there were three interesting findings possibly related to the pleiotropic effects of olmesartan on adipose tissue in KKAy mice: (1) an inhibitory effect on adipocyte hypertrophy, (2) a suppressive effect on IL-6 gene expression, and (3) an ameliorating effect on oxidative stress. On the other hand, olmesartan exerted no evident influence on the adipose tissue expression of AT1R-associated protein (ATRAP), which is a molecule interacting with AT1R so as to inhibit pathological AT1R activation and is suggested to be an emerging molecular target in metabolic disorders with visceral obesity. Collectively, these results suggest that the blood pressure lowering effect of olmesartan in KKAy mice is associated with an improvement in adipocyte, including suppression of adipocyte hypertrophy and inhibition of the adipose IL-6-oxidative stress axis. Further study is needed to clarify the functional role of adipose ATRAP in the pleiotropic effects of olmesartan. Akinobu Maeda, Kouichi Tamura, Hiromichi Wakui, Masato Ohsawa, Kengo Azushima, Kazushi Uneda, Tomohiko Kanaoka, Ryu Kobayashi, Kohji Ohki, Miyuki Matsuda, Yuko Tsurumi-Ikeya, Akio Yamashita, Yasuo Tokita, and Satoshi Umemura Copyright © 2014 Akinobu Maeda et al. All rights reserved. Biosorption of Fe(II) and Mn(II) Ions from Aqueous Solution by Rice Husk Ash Sun, 01 Jun 2014 11:06:32 +0000 http://www.hindawi.com/journals/bmri/2014/973095/ Rice husk ash (RHA), an agricultural waste, was used as biosorbent for the removal of Iron(II) and Manganese(II) ions from aqueous solutions. The structural and morphological characteristics of RHA and its elemental compositions before and after adsorption of Fe(II) and Mn(II) were determined by scanning electron microscopic (SEM) and X-ray fluorescence (XRF) analyses. Batch experiments were carried out to determine the influence of initial pH, contact time, adsorbent dosage, and initial concentration on the removal of Fe(II) and Mn(II) ions. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by RHA. The correlation coefficient () of Langmuir and Freundlich isotherm models equals 0.995 and 0.901 for Fe(II), 0.9862 and 0.8924 for Mn(II), respectively, so the Langmuir model fitted the equilibrium data better than the Freundlich isotherm model. The mean free energy values evaluated from the D-R model indicated that the biosorption of Fe(II) and Mn(II) onto RHA was physical in nature. Experimental data also showed that the biosorption processes of both metal ions complied with the pseudo-second-order kinetics. Ying Zhang, Jiaying Zhao, Zhao Jiang, Dexin Shan, and Yan Lu Copyright © 2014 Ying Zhang et al. All rights reserved. A-FABP Concentration Is More Strongly Associated with Cardiometabolic Risk Factors and the Occurrence of Metabolic Syndrome in Premenopausal Than in Postmenopausal Middle-Aged Women Thu, 29 May 2014 11:54:06 +0000 http://www.hindawi.com/journals/bmri/2014/645762/ We aimed at the evaluation of the relationship between adipocyte fatty acid binding protein (A-FABP) and cardiometabolic risk factors in premenopausal and postmenopausal women. Additionally, we compared A-FABP with adipokines related to metabolic syndrome (MetS) such as leptin and adiponectin. 94 premenopausal and 90 early postmenopausal middle-aged Caucasian women were subject to examinations. Postmenopausal women had higher A-FABP than premenopausal; this difference became insignificant after controlling for age. We found significantly higher correlation coefficients between A-FABP and TC/HDL-C ratio and number of MetS components in premenopausal women, compared to postmenopausal. Each 1 ng/dL increase in A-FABP concentration significantly increased the probability of occurrence of atherogenic lipid profile in premenopausal women, even after multivariate adjustment. All odds ratios became insignificant after controlling for BMI in postmenopausal women. A-FABP was more strongly associated with MetS than leptin and adiponectin in premenopausal women. Adiponectin concentration was a better biomarker for MetS after menopause. Our results suggest that the A-FABP is more strongly associated with some cardiometabolic risk factors in premenopausal than in postmenopausal women. Higher values of A-FABP after menopause are mainly explained by the fact that postmenopausal women are older. Because of the limitation of study, these results should be interpreted with caution. Anna Stefanska, Irena Ponikowska, and Grazyna Sypniewska Copyright © 2014 Anna Stefanska et al. All rights reserved. Misidentification of Candida guilliermondii as C. famata among Strains Isolated from Blood Cultures by the VITEK 2 System Thu, 29 May 2014 11:31:13 +0000 http://www.hindawi.com/journals/bmri/2014/250408/ Introduction. The aim of this study was to differentiate between Candida famata and Candida guilliermondii correctly by using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and gene sequencing. Methods. Twenty-eight Candida strains from blood cultures that had been identified as C. famata (), C. famata/C. guilliermondii (), and C. guilliermondii () by the VITEK 2 system using the YST ID card were included. We identified these strains by MALDI-TOF MS and gene sequencing using the 28S rRNA and ITS genes and compared the results with those obtained by the VITEK 2 system. Results. All 28 isolates were finally identified as C. guilliermondii. Sequencing analysis of the 28S rRNA gene showed 99.80%–100% similarity with C. guilliermondii for all 28 strains. The ITS gene sequencing of the strains showed 98.34%–100% homology with C. guilliermondii. By MALDI-TOF, we could correctly identify 21 (75%) of 28 C. guilliermondii isolates. Conclusion. We should suspect misidentification when C. famata is reported by the VITEK 2 system, and we always should keep in mind the possibility of misidentification of any organism when an uncommon species is reported. Si Hyun Kim, Jeong Hwan Shin, Jeong Ha Mok, Shine Young Kim, Sae Am Song, Hye Ran Kim, Joong-Ki Kook, Young-Hyo Chang, Il Kwon Bae, and Kwangha Lee Copyright © 2014 Si Hyun Kim et al. All rights reserved. A Novel Hemagglutinin with Antiproliferative Activity against Tumor Cells from the Hallucinogenic Mushroom Boletus speciosus Thu, 29 May 2014 09:31:59 +0000 http://www.hindawi.com/journals/bmri/2014/340467/ Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg2+ and slightly inhibited by Fe2+, Ca2+, and Pb2+. None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210) in vitro, with IC50 of 4.7 μM and 7.0 μM, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μM. Jian Sun, Tzi-Bun Ng, Hexiang Wang, and Guoqing Zhang Copyright © 2014 Jian Sun et al. All rights reserved. Novel Medicines and Strategies in Cancer Treatment and Prevention Tue, 27 May 2014 06:55:09 +0000 http://www.hindawi.com/journals/bmri/2014/474078/ Chih-Hsin Tang, Gautam Sethi, and Po-Lin Kuo Copyright © 2014 Chih-Hsin Tang et al. All rights reserved. Laboratory Markers of Ventricular Arrhythmia Risk in Renal Failure Mon, 26 May 2014 13:45:05 +0000 http://www.hindawi.com/journals/bmri/2014/509204/ Sudden cardiac death continues to be a major public health problem. Ventricular arrhythmia is a main cause of sudden cardiac death. The present review addresses the links between renal function tests, several laboratory markers, and ventricular arrhythmia risk in patients with renal disease, undergoing or not hemodialysis or renal transplant, focusing on recent clinical studies. Therapy of hypokalemia, hypocalcemia, and hypomagnesemia should be an emergency and performed simultaneously under electrocardiographic monitoring in patients with renal failure. Serum phosphates and iron, PTH level, renal function, hemoglobin and hematocrit, pH, inflammatory markers, proteinuria and microalbuminuria, and osmolarity should be monitored, besides standard 12-lead ECG, in order to prevent ventricular arrhythmia and sudden cardiac death. Ioana Mozos Copyright © 2014 Ioana Mozos. All rights reserved. Pfetin as a Risk Factor of Recurrence in Gastrointestinal Stromal Tumors Mon, 26 May 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/651935/ Background. Despite complete resection of gastrointestinal stromal tumors (GIST), recurrent and/or metastatic disease occurs, often depending on the grade of malignancy. As such, markers are needed that accurately predict patients at high risk for recurrence. Previously our group reported Pfetin as a prognostic biomarker for GIST. In order to create an approach for predicting risk of recurrence, we incorporated Pfetin expression with clinicopathological data to produce a predictive model. Object. Forty-five patients with localized primary GIST were treated with complete gross surgical resection surgically at our institution between 1995 and 2010 were included. The majority of tumors originated in the stomach (38 cases), as well as small intestine (6 cases) and rectum (1 case). Method. (1) We performed retrospective analysis of the connection between Pfetin expression, clinicopathological data, and incidences of recurrence, using bivariate and multivariate analyses. (2) The reactivity of the monoclonal antibody against Pfetin was examined by immunohistochemistry. Pfetin. We have reported Pfetin, identified microarray technology, and compared between statistically different GISTs for good and poor prognoses and for prognostic marker. Results. There were 7 cases of recurrences. (1) By univariate analysis, tumor size, mitoses, exposure to abdominal cavity, and complete tumor removal predicted risk of recurrence. (2) Pfetin-negative cases were significantly related to recurrence (P = 0.002). Conclusions. This analysis demonstrates that lack of Pfetin expression is an additional predictor of recurrence in resected GIST. Further study may determine the role of this variable added to the current predictive model for selection of adjuvant therapy. Hajime Orita, Tomoaki Ito, Tomoyuki Kushida, Mutsumi Sakurada, Hiroshi Maekawa, Ryo Wada, Yoshiyuki Suehara, Daisuke Kubota, and Koichi Sato Copyright © 2014 Hajime Orita et al. All rights reserved. Synthesis of Rosin Acid Starch Catalyzed by Lipase Sun, 25 May 2014 05:06:11 +0000 http://www.hindawi.com/journals/bmri/2014/647068/ Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch. Rihui Lin, He Li, Han Long, Jiating Su, and Wenqin Huang Copyright © 2014 Rihui Lin et al. All rights reserved. A Modified Fluorimetric Method for Determination of Hydrogen Peroxide Using Homovanillic Acid Oxidation Principle Mon, 19 May 2014 13:12:08 +0000 http://www.hindawi.com/journals/bmri/2014/342958/ Hydrogen peroxide (H2O2) level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA) oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v) followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was ≥2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be >12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4. Biswaranjan Paital Copyright © 2014 Biswaranjan Paital. All rights reserved. Evaluation of Assays for Measurement of Serum (Anti)oxidants in Hemodialysis Patients Mon, 19 May 2014 11:20:22 +0000 http://www.hindawi.com/journals/bmri/2014/843157/ Background. Various biomarkers and assays have been used for assessment of (anti)oxidant status in hemodialysis patients, including those intended for measurement of serum total (anti)oxidants, most often as a part of panel biomarkers. Methods. Serum (anti)oxidant status was measured in 32 chronically hemodialyzed patients and in 47 healthy persons, using two oxidations and three antioxidant assays. Results. The patients before the hemodialysis session have had higher values of total oxidants in comparison to the healthy persons, with a further increase during the hemodialysis. These findings were confirmed with both oxidation assays, but they differ in the percentage of increase and the statistical significance. All three antioxidant assays showed significantly higher values of the total serum antioxidants in the patients before the hemodialysis session in comparison to the healthy persons, and their significant decrease during the hemodialysis. However, the assays differ in the percentage of decrease, its statistical significance, and the correlations with uric acid. Conclusion. The variability of results of total (anti)oxidants which are obtained using different assays should be taken into account when interpreting data from clinical studies of oxidative stress, especially in complex pathologies such as chronic hemodialysis. Tatjana Ruskovska, Eugene H. J. M. Jansen, and Risto Antarorov Copyright © 2014 Tatjana Ruskovska et al. All rights reserved. Total and Free Serum Sialic Acid Concentration in Liver Diseases Sun, 18 May 2014 14:51:30 +0000 http://www.hindawi.com/journals/bmri/2014/876096/ Background. The objective of this study was to compare the levels of total (TSA) and free (FSA) sialic acid in acute and chronic liver diseases. Materials and Methods. The serum TSA and FSA levels were determined in 278 patients suffering from acute and chronic liver diseases of different etiologies. TSA was estimated by enzymatic method and FSA by the thiobarbituric method modified by Skoza and Mohos. Results. There were no significant differences in the serum TSA concentration between liver diseases of different etiologies, although in most of the liver diseases the mean TSA level was significantly lower than that in the control group. In contrast to TSA, the concentration of FSA appears to differ between liver diseases. In toxic hepatitis it was higher than that in nonalcoholic cirrhosis. However, neither of them differs between alcoholic and nonalcoholic cirrhosis or between liver tumors and tumors with cirrhosis. Conclusions. We conclude that the changes in concentrations of TSA and FSA during the same liver diseases indicate significant disturbances in sialylation of serum glycoproteins. Ewa Gruszewska, Bogdan Cylwik, Anatol Panasiuk, Maciej Szmitkowski, Robert Flisiak, and Lech Chrostek Copyright © 2014 Ewa Gruszewska et al. All rights reserved. Gla-Rich Protein Is a Potential New Vitamin K Target in Cancer: Evidences for a Direct GRP-Mineral Interaction Sun, 18 May 2014 11:15:35 +0000 http://www.hindawi.com/journals/bmri/2014/340216/ Gla-rich protein (GRP) was described in sturgeon as a new vitamin-K-dependent protein (VKDP) with a high density of Gla residues and associated with ectopic calcifications in humans. Although VKDPs function has been related with γ-carboxylation, the Gla status of GRP in humans is still unknown. Here, we investigated the expression of recently identified GRP spliced transcripts, the γ-carboxylation status, and its association with ectopic calcifications, in skin basal cell and breast carcinomas. GRP-F1 was identified as the predominant splice variant expressed in healthy and cancer tissues. Patterns of γ-carboxylated GRP (cGRP)/undercarboxylated GRP (ucGRP) accumulation in healthy and cancer tissues were determined by immunohistochemistry, using newly developed conformation-specific antibodies. Both GRP protein forms were found colocalized in healthy tissues, while ucGRP was the predominant form associated with tumor cells. Both cGRP and ucGRP found at sites of microcalcifications were shown to have in vitro calcium mineral-binding capacity. The decreased levels of cGRP and predominance of ucGRP in tumor cells suggest that GRP may represent a new target for the anticancer potential of vitamin K. Also, the direct interaction of cGRP and ucGRP with BCP crystals provides a possible mechanism explaining GRP association with pathological mineralization. Carla S. B. Viegas, Marjolein Herfs, Marta S. Rafael, José L. Enriquez, Alexandra Teixeira, Inês M. Luís, Cynthia M. R. van ‘t Hoofd, Alexandre João, Vera L. Maria, Sofia Cavaco, Ana Ferreira, Manuel Serra, Elke Theuwissen, Cees Vermeer, and Dina C. Simes Copyright © 2014 Carla S. B. Viegas et al. All rights reserved. Relationship between Serum Total Cholesterol Level and Serum Biochemical Bone Turnover Markers in Healthy Pre- and Postmenopausal Women Thu, 15 May 2014 12:41:05 +0000 http://www.hindawi.com/journals/bmri/2014/398397/ Background. The presence of common risk factors suggests that there is a relationship between osteoporosis and cardiovascular disease, possibly via dyslipidemia and inflammation. We investigated the relationships among the lipid profile, the inflammation marker high-sensitivity C-reactive protein (hsCRP), bone turnover markers, and bone mineral density (BMD) to assess the correlation between osteoporosis and cardiovascular disease and identify factors predicting osteoporosis. Methods. The study included 759 Korean women older than 20 years of age. The BMD, serum lipid profile, and levels of hsCRP, cross-linked C-terminal peptide (CTX), and osteocalcin were measured. We compared the serum biomarkers between groups with normal and low BMD and assessed the correlations between the levels of bone turnover markers and the lipid profile and hsCRP level. Results. The concentrations of CTX, osteocalcin, and total cholesterol were significantly higher in the low BMD group than in the normal BMD group in premenopausal women group. However, hsCRP was not correlated with these parameters. Multivariate logistic regression analysis revealed that TC (OR, 1.647; 95% CI, 1.190–2.279) and osteocalcin (OR, 1.044; 95% CI, 1.002–1.088) had an increased risk of low BMD in premenopausal women. Conclusions. These results indicate that total cholesterol concentration is correlated with the levels of bone turnover markers, suggesting that it might predict osteoporosis in premenopausal women. Tae-Dong Jeong, Woochang Lee, Sung-Eun Choi, Jae Seung Kim, Hong-Kyu Kim, Sung Jin Bae, Sail Chun, and Won-Ki Min Copyright © 2014 Tae-Dong Jeong et al. All rights reserved. Breath Ketone Testing: A New Biomarker for Diagnosis and Therapeutic Monitoring of Diabetic Ketosis Sun, 11 May 2014 13:46:44 +0000 http://www.hindawi.com/journals/bmri/2014/869186/ Background. Acetone, β-hydroxybutyric acid, and acetoacetic acid are three types of ketone body that may be found in the breath, blood, and urine. Detecting altered concentrations of ketones in the breath, blood, and urine is crucial for the diagnosis and treatment of diabetic ketosis. The aim of this study was to evaluate the advantages of different detection methods for ketones, and to establish whether detection of the concentration of ketones in the breath is an effective and practical technique. Methods. We measured the concentrations of acetone in the breath using gas chromatography-mass spectrometry and β-hydroxybutyrate in fingertip blood collected from 99 patients with diabetes assigned to groups 1 (−), 2 (±), 3 (+), 4 (++), or 5 (+++) according to urinary ketone concentrations. Results. There were strong relationships between fasting blood glucose, age, and diabetic ketosis. Exhaled acetone concentration significantly correlated with concentrations of fasting blood glucose, ketones in the blood and urine, LDL-C, creatinine, and blood urea nitrogen. Conclusions. Breath testing for ketones has a high sensitivity and specificity and appears to be a noninvasive, convenient, and repeatable method for the diagnosis and therapeutic monitoring of diabetic ketosis. Yue Qiao, Zhaohua Gao, Yong Liu, Yan Cheng, Mengxiao Yu, Lingling Zhao, Yixiang Duan, and Yu Liu Copyright © 2014 Yue Qiao et al. All rights reserved. Mutation Analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese Patients with Myeloproliferative Neoplasms Sun, 11 May 2014 12:22:45 +0000 http://www.hindawi.com/journals/bmri/2014/485645/ Since the discovery of JAK2V617F tyrosine kinase-activating mutation, several genes have been found mutated in myeloproliferative neoplasms (MPNs). FLT3-ITD, NPM1, and DNMT3A mutations frequently occurred in AML patients and have been found conferred with myeloproliferative neoplasms in mouse model. Therefore, we sought to search for mutations in JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in 129 cases including 120 classic MPN cases and 9 MDS/MPN cases. JAK2V617F mutation was found in 60% of the 120 classic MPNs. However, none of the patients displayed FLT3-ITD and NPM1 mutations; only 2 patients harbored DNMT3A R882 mutation. Further studies including whole-genome sequence will be conducted to investigate the possible involvement of these genes in MPN. Min Wang, Na He, Tian Tian, Lu Liu, Shuang Yu, and Daoxin Ma Copyright © 2014 Min Wang et al. All rights reserved. Novel Molecular Biomarkers at the Blood-Brain Barrier in ALS Sun, 11 May 2014 07:09:17 +0000 http://www.hindawi.com/journals/bmri/2014/907545/ Recently neuroinflammation has gained a particular focus as a key mechanism of ALS. Several studies in vivo as well as in vitro have nominated immunoglobulin G (IgG) isolated from ALS patients as an active contributor to disease onset and progression. We have shown that ALS IgG affects astroglial Ca2+ excitability and induces downstream activation of phosphatidylinositol 3-kinase. These studies were hampered by a lack of knowledge of the pathway of entry of immune factors in the CNS. Our MRI data revealed the blood-brain barrier BBB leakage and T cell infiltration into brain parenchyma in ALS G93A rats. Since astrocyte ensheathes blood vessel wall contributing to BBB stability and plays an important role in ALS pathogenesis, we have studied astrocytic membrane proteins water channel aquaporin-4 and the inwardly rectifying potassium channel. In this review, we will summarize data related to BBB disruption with particular emphasis on impaired function of astrocytes in ALS. We will discuss implication of membrane proteins expressed on astrocytic endfeet, aquaporin-4, and inwardly rectifying potassium channel in the pathology of ALS. In addition to ALS-specific IgGs, these membrane proteins are proposed as novel biomarkers of the disease. Danijela Bataveljic, Milena Milosevic, Lidija Radenovic, and Pavle Andjus Copyright © 2014 Danijela Bataveljic et al. All rights reserved. Retracted: Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges Thu, 08 May 2014 16:21:26 +0000 http://www.hindawi.com/journals/bmri/2014/571984/ BioMed Research International Copyright © 2014 BioMed Research International. All rights reserved. Association between the Delta Estimated Glomerular Filtration Rate and the Prevalence of Monoclonal Gammopathy of Undetermined Significance in Korean Males Thu, 08 May 2014 12:35:34 +0000 http://www.hindawi.com/journals/bmri/2014/356080/ Background. We investigated the association between the reduction in the estimated glomerular filtration rate (eGFR) and the prevalence of monoclonal gammopathy of undetermined significance (MGUS) in Korean males. Methods. We enrolled 723 healthy Korean males. Serum creatinine concentration, serum electrophoresis, serum immunofixation, and the serum free light chain assay were performed. We calculated delta eGFR per year (ΔeGFR/yr). The prevalence of MGUS was compared based on the ΔeGFR/yr and age group. Results. Thirteen (1.8%) of 723 participants exhibited the monoclonal band on serum immunofixation. Prevalence of MGUS by age group was 0.00% (0/172 for 40 years), 1.63% (6/367 for 60 years), and 3.80% (7/184 for >60 years). The median decrease in ΔeGFR/yr was 5.3%. The prevalence of MGUS in participants in their 50s with >5.3% decline in ΔeGFR/yr was significantly higher than those with <5.3% decrease in ΔeGFR/yr (3.16% versus 0.00%; ). The prevalence of MGUS in participants in their 50s with >5.3% decrease in ΔeGFR/yr was similar to that of healthy males in their 60s. Conclusion. Using the rate of reduction in ΔeGFR/yr in healthy Korean males who had their serum creatinine level checked regularly may increase the MGUS detection rate in clinical practice. Tae-Dong Jeong, Woochang Lee, Sail Chun, and Won-Ki Min Copyright © 2014 Tae-Dong Jeong et al. All rights reserved. Platelet Function Tests: A Review of Progresses in Clinical Application Thu, 08 May 2014 12:34:03 +0000 http://www.hindawi.com/journals/bmri/2014/456569/ The major goal of traditional platelet function tests has been to screen and diagnose patients who present with bleeding problems. However, as the central role of platelets implicated in the etiology of arterial thrombotic diseases such as myocardial infarction and stroke became widely known, platelet function tests are now being promoted to monitor the efficacy of antiplatelet drugs and also to potentially identify patients at increased risk of thrombosis. Beyond hemostasis and thrombosis, an increasing number of studies indicate that platelets play an integral role in intercellular communication, are mediators of inflammation, and have immunomodulatory activity. As new potential biomarkers and technologies arrive at the horizon, platelet functions testing appears to take on a new aspect. This review article discusses currently available clinical application of platelet function tests, placing emphasis on essential characteristics. Jae-Lim Choi, Shuhua Li, and Jin-Yeong Han Copyright © 2014 Jae-Lim Choi et al. All rights reserved. Erythropoietic Potential of CD34+ Hematopoietic Stem Cells from Human Cord Blood and G-CSF-Mobilized Peripheral Blood Mon, 05 May 2014 13:59:44 +0000 http://www.hindawi.com/journals/bmri/2014/435215/ Red blood cell (RBC) supply for transfusion has been severely constrained by the limited availability of donor blood and the emergence of infection and contamination issues. Alternatively, hematopoietic stem cells (HSCs) from human organs have been increasingly considered as safe and effective blood source. Several methods have been studied to obtain mature RBCs from CD34+ hematopoietic stem cells via in vitro culture. Among them, human cord blood (CB) and granulocyte colony-stimulating factor-mobilized adult peripheral blood (mPB) are common adult stem cells used for allogeneic transplantation. Our present study focuses on comparing CB- and mPB-derived stem cells in differentiation from CD34+ cells into mature RBCs. By using CD34+ cells from cord blood and G-CSF mobilized peripheral blood, we showed in vitro RBC generation of artificial red blood cells. Our results demonstrate that CB- and mPB-derived CD34+ hematopoietic stem cells have similar characteristics when cultured under the same conditions, but differ considerably with respect to expression levels of various genes and hemoglobin development. This study is the first to compare the characteristics of CB- and mPB-derived erythrocytes. The results support the idea that CB and mPB, despite some similarities, possess different erythropoietic potentials in in vitro culture systems. Honglian Jin, Han-Soo Kim, Sinyoung Kim, and Hyun Ok Kim Copyright © 2014 Honglian Jin et al. All rights reserved. Mass Spectrometric Analysis of Differentially Expressed Proteins in an Endangered Medicinal Herb, Picrorhiza kurroa Sun, 04 May 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/326405/ Picrorhiza kurroa grown in the Northwestern Himalayan region is used in various herbal formulations but extensive harvesting of this plant has led it to near extinction. The active constituents responsible for the medicinal properties of P. kurroa have been identified as picroside-I and picroside-II which are present in a particular ratio (1 : 1.5) in herbal formulations like Picroliv. The biosynthetic pathway of picrosides has been partially deciphered till date and needs to be elucidated completely. Review of literature revealed that no information is available as of today on the proteome analysis of Picrorhiza kurroa w.r.t. picroside-II biosynthesis. Therefore, with the aim of identifying proteins associated with picroside biosynthesis in Picrorhiza kurroa, differential protein expression was studied under picroside accumulating versus nonaccumulating conditions using SDS-PAGE. A total of 19 differentially expressed proteins were identified using MALDI-TOF/TOF MS followed by MASCOT search. Proteins involved in diverse functions were identified amongst which the most important proteins were glyceraldehyde-3-phosphate dehydrogenase, 1-aminocyclopropane-1-carboxylate oxidase, photosystem I reaction centre subunit V, 2-oxoglutarate ferrous-dependent oxygenase and putative cytochrome P450 superfamily protein because of their role in picroside biosynthesis. These identified proteins provide an insight and a basic platform for thorough understanding of biosynthesis of secondary metabolites and various other physiological processes of P. kurroa. Amit Sud, Rajinder Singh Chauhan, and Chanderdeep Tandon Copyright © 2014 Amit Sud et al. All rights reserved. CCAAT/Enhancer-Binding Protein α Is a Crucial Regulator of Human Fat Mass and Obesity Associated Gene Transcription and Expression Tue, 29 Apr 2014 14:17:03 +0000 http://www.hindawi.com/journals/bmri/2014/406909/ Several susceptibility loci have been reported associated with obesity and T2DM in GWAS. Fat mass and obesity associated gene (FTO) is the first gene associated with body mass index (BMI) and risk for diabetes in diverse patient populations. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. While much is known about the epigenetic mutations contributing to obesity and T2DM, less is certain with the expression regulation of FTO gene. In this study, a highly conserved canonical C/EBPα binding site was located around position −45~−54 bp relative to the human FTO gene transcriptional start site. Site-directed mutagenesis of the putative C/EBPα binding sites decreased FTO promoter activity. Overexpression and RNAi studies also indicated that C/EBPα was required for the expression of FTO. Chromatin immunoprecipitation (ChIP) experiment was carried out and the result shows direct binding of C/EBPα to the putative binding regions in the FTO promoter. Collectively, our data suggest that C/EBPα may act as a positive regulator binding to FTO promoter and consequently, activates the gene transcription. Wei Ren, Jianjin Guo, Feng Jiang, Jun Lu, Ying Ding, Aimei Li, Xiubin Liang, and Weiping Jia Copyright © 2014 Wei Ren et al. All rights reserved. Roles of Vascular Endothelial Growth Factor in Amyotrophic Lateral Sclerosis Tue, 29 Apr 2014 13:37:14 +0000 http://www.hindawi.com/journals/bmri/2014/947513/ Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS. Ana Catarina Pronto-Laborinho, Susana Pinto, and Mamede de Carvalho Copyright © 2014 Ana Catarina Pronto-Laborinho et al. All rights reserved. Evaluation of Three Automated Nucleic Acid Extraction Systems for Identification of Respiratory Viruses in Clinical Specimens by Multiplex Real-Time PCR Mon, 28 Apr 2014 11:52:36 +0000 http://www.hindawi.com/journals/bmri/2014/430650/ A total of 84 nasopharyngeal swab specimens were collected from 84 patients. Viral nucleic acid was extracted by three automated extraction systems: QIAcube (Qiagen, Germany), EZ1 Advanced XL (Qiagen), and MICROLAB Nimbus IVD (Hamilton, USA). Fourteen RNA viruses and two DNA viruses were detected using the Anyplex II RV16 Detection kit (Seegene, Republic of Korea). The EZ1 Advanced XL system demonstrated the best analytical sensitivity for all the three viral strains. The nucleic acids extracted by EZ1 Advanced XL showed higher positive rates for virus detection than the others. Meanwhile, the MICROLAB Nimbus IVD system was comprised of fully automated steps from nucleic extraction to PCR setup function that could reduce human errors. For the nucleic acids recovered from nasopharyngeal swab specimens, the QIAcube system showed the fewest false negative results and the best concordance rate, and it may be more suitable for detecting various viruses including RNA and DNA virus strains. Each system showed different sensitivity and specificity for detection of certain viral pathogens and demonstrated different characteristics such as turnaround time and sample capacity. Therefore, these factors should be considered when new nucleic acid extraction systems are introduced to the laboratory. Yoonjung Kim, Mi-Soon Han, Juwon Kim, Aerin Kwon, and Kyung-A Lee Copyright © 2014 Yoonjung Kim et al. All rights reserved. Homocysteine Serum Levels in Diabetic Patients with Non Proliferative, Proliferative and without Retinopathy Mon, 28 Apr 2014 11:47:26 +0000 http://www.hindawi.com/journals/bmri/2014/191497/ Homocysteine has been associated with extracellular matrix changes. The diabetic retinopathy is a neurovascular complication of diabetes mellitus and it is the leading cause of vision loss among working adults worldwide. In this study, we evaluate the role of homocysteine in diabetic retinopathy analyzing the plasma levels of homocysteine in 63 diabetic type 2 patients with nonproliferative retinopathy (NPDR), 62 patients with proliferative diabetic retinopathy (PDR), 50 healthy subjects used as control group, and 75 randomly selected patients. Giulia Malaguarnera, Caterina Gagliano, Maria Giordano, Salvatore Salomone, Marco Vacante, Claudio Bucolo, Filippo Caraci, Michele Reibaldi, Filippo Drago, Teresio Avitabile, and Massimo Motta Copyright © 2014 Giulia Malaguarnera et al. All rights reserved. New Insights into c-Ret Signalling Pathway in the Enteric Nervous System and Its Relationship with ALS Mon, 28 Apr 2014 08:49:33 +0000 http://www.hindawi.com/journals/bmri/2014/328348/ The receptor tyrosine kinase Ret (c-Ret) transduces the glial cell line-derived neurotrophic factor (GDNF) signal, one of the neurotrophic factors related to the degeneration process or the regeneration activity of motor neurons in amyotrophic lateral sclerosis (ALS). The phosphorylation of several tyrosine residues of c-Ret seems to be altered in ALS. c-Ret is expressed in motor neurons and in the enteric nervous system (ENS) during the embryonic period. The characteristics of the ENS allow using it as model for central nervous system (CNS) study and being potentially useful for the research of human neurological diseases such as ALS. The aim of the present study was to investigate the cellular localization and quantitative evaluation of marker c-Ret in the adult human gut. To assess the nature of c-Ret positive cells, we performed colocalization with specific markers of cells that typically are located in the enteric ganglia. The colocalization of PGP9.5 and c-Ret was preferentially intense in enteric neurons with oval morphology and mostly peripherally localized in the ganglion, so we concluded that the c-Ret receptor is expressed by a specific subtype of enteric neurons in the mature human ENS of the gut. The functional significance of these c-Ret positive neurons is discussed. M. J. Luesma, I. Cantarero, J. M. Álvarez-Dotu, S. Santander, and C. Junquera Copyright © 2014 M. J. Luesma et al. All rights reserved. Naja naja karachiensis Envenomation: Biochemical Parameters for Cardiac, Liver, and Renal Damage along with Their Neutralization by Medicinal Plants Sun, 27 Apr 2014 13:02:37 +0000 http://www.hindawi.com/journals/bmri/2014/970540/ Naja naja karachiensis envenomation was found to hit more drastically heart, liver, and kidneys. 400 μg/kg of venom-raised moderate serum levels of ALT ( U/L, ), AST ( U/L, ), urea ( mg/dL, ), creatinine ( mg/dL, ), CK-MB ( U/L, ), and LDH ( U/L, ) were injected in experimental rabbits. However, lethality was enhanced with 800 μg/kg of venom in terms of significant release of ALT ( U/L, ), AST ( U/L, ), urea ( mg/dL, ), creatinine ( mg/dL, ), CK-MB ( U/L, ), and LDH ( U/L, ). Among twenty-eight tested medicinal plant extracts, only Stenolobium stans (L.) Seem was found the best antivenom () compared to the efficacy of standard antidote (ALT  U/L, AST  U/L, urea  mg/dL, creatinine  mg/dL, CK-MB  U/L, and LDH  U/L). Other plant extracts were proved less beneficial and partly neutralized the toxicities posed by cobra venom. However, it is essential in future to isolate and characterize bioactive compound(s) from Stenolobium stans (L.) Seem extract to overcome the complications of snake bite. Muhammad Hassham Hassan Bin Asad, Ghulam Murtaza, Muhammad Ubaid, Durr-e-Sabih, Ashif Sajjad, Rubada Mehmood, Qaisar Mahmood, Muhammad Muzzmil Ansari, Sabiha Karim, Zahid Mehmood, and Izhar Hussain Copyright © 2014 Muhammad Hassham Hassan Bin Asad et al. All rights reserved. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis Sun, 27 Apr 2014 10:05:01 +0000 http://www.hindawi.com/journals/bmri/2014/852163/ Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs). Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1) gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG) proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons. Javier Sábado, Anna Casanovas, Olga Tarabal, Marta Hereu, Lídia Piedrafita, Jordi Calderó, and Josep E. Esquerda Copyright © 2014 Javier Sábado et al. All rights reserved. The E3 Ligase CHIP: Insights into Its Structure and Regulation Thu, 24 Apr 2014 12:37:31 +0000 http://www.hindawi.com/journals/bmri/2014/918183/ The carboxy-terminus of Hsc70 interacting protein (CHIP) is a cochaperone E3 ligase containing three tandem repeats of tetratricopeptide (TPR) motifs and a C-terminal U-box domain separated by a charged coiled-coil region. CHIP is known to function as a central quality control E3 ligase and regulates several proteins involved in a myriad of physiological and pathological processes. Recent studies have highlighted varied regulatory mechanisms operating on the activity of CHIP which is crucial for cellular homeostasis. In this review article, we give a concise account of our current knowledge on the biochemistry and regulation of CHIP. Indranil Paul and Mrinal K. Ghosh Copyright © 2014 Indranil Paul and Mrinal K. Ghosh. All rights reserved. Oral and Intraperitoneal Administration of Quercetin Decreased Lymphocyte DNA Damage and Plasma Lipid Peroxidation Induced by TSA In Vivo Wed, 23 Apr 2014 13:42:27 +0000 http://www.hindawi.com/journals/bmri/2014/580626/ Our previous study showed that quercetin enhances the anticancer effect of trichostatin A (TSA) in xenograft mice given quercetin intraperitoneally (10 mg/kg, 3 times/week). Herein, we investigate whether quercetin administered orally exerts such an effect and prevents the cytotoxic side effects of TSA. We found that quercetin given orally (20 and 100 mg/kg, 3 times/week) failed to enhance the antitumor effect of TSA although it increased the total quercetin concentration more than quercetin administered intraperitoneally in the plasma. The compound quercetin-3-glucuronide (Q3G) increased the most. However, quercetin administered intraperitoneally increased the total quercetin level in tumor tissues more than oral quercetin. Oral and intraperitoneal administration of quercetin similarly decreased lymphocyte DNA damage and plasma lipid peroxidation level induced by TSA. Furthermore, we found that the enhancing effect of Q3G on the antitumor effect of TSA and the incorporation of Q3G was less than that of quercetin in A549 cells. However, we found that A549 cells possessed the ability to convert Q3G to quercetin. In conclusion, different from quercetin administered intraperitoneally, quercetin administered orally failed to enhance the antitumor effect of TSA because of its metabolic conversion. However, it prevented TSA-induced DNA damage and lipid peroxidation. Shu-Ting Chan, Yi-Chin Lin, Cheng-Hung Chuang, Rong-Jen Shiau, Jiunn-Wang Liao, and Shu-Lan Yeh Copyright © 2014 Shu-Ting Chan et al. All rights reserved. Neuroimaging to Investigate Multisystem Involvement and Provide Biomarkers in Amyotrophic Lateral Sclerosis Thu, 17 Apr 2014 13:29:05 +0000 http://www.hindawi.com/journals/bmri/2014/467560/ Neuroimaging allows investigating the extent of neurological systems degeneration in amyotrophic lateral sclerosis (ALS). Advanced MRI methods can detect changes related to the degeneration of upper motor neurons but have also demonstrated the participation of other systems such as the sensory system or basal ganglia, demonstrating in vivo that ALS is a multisystem disorder. Structural and functional imaging also allows studying dysfunction of brain areas associated with cognitive signs. From a biomarker perspective, numerous studies using diffusion tensor imaging showed a decrease of fractional anisotropy in the intracranial portion of the corticospinal tract but its diagnostic value at the individual level remains limited. A multiparametric approach will be required to use MRI in the diagnostic workup of ALS. A promising avenue is the new methodological developments of spinal cord imaging that has the advantage to investigate the two motor system components that are involved in ALS, that is, the lower and upper motor neuron. For all neuroimaging modalities, due to the intrinsic heterogeneity of ALS, larger pooled banks of images with standardized image acquisition and analysis procedures are needed. In this paper, we will review the main findings obtained with MRI, PET, SPECT, and nuclear magnetic resonance spectroscopy in ALS. Pierre-François Pradat and Mohamed-Mounir El Mendili Copyright © 2014 Pierre-François Pradat and Mohamed-Mounir El Mendili. All rights reserved. Genetics of Type 2 Diabetes: Insights into the Pathogenesis and Its Clinical Application Thu, 17 Apr 2014 06:30:37 +0000 http://www.hindawi.com/journals/bmri/2014/926713/ With rapidly increasing prevalence, diabetes has become one of the major causes of mortality worldwide. According to the latest studies, genetic information makes substantial contributions towards the prediction of diabetes risk and individualized antidiabetic treatment. To date, approximately 70 susceptibility genes have been identified as being associated with type 2 diabetes (T2D) at a genome-wide significant level (). However, all the genetic loci identified so far account for only about 10% of the overall heritability of T2D. In addition, how these novel susceptibility loci correlate with the pathophysiology of the disease remains largely unknown. This review covers the major genetic studies on the risk of T2D based on ethnicity and briefly discusses the potential mechanisms and clinical utility of the genetic information underlying T2D. Xue Sun, Weihui Yu, and Cheng Hu Copyright © 2014 Xue Sun et al. All rights reserved. Detection of Herpes Simplex and Varicella-Zoster Virus in Clinical Specimens by Multiplex Real-Time PCR and Melting Curve Analysis Wed, 16 Apr 2014 15:54:38 +0000 http://www.hindawi.com/journals/bmri/2014/261947/ Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2), and varicella-zoster virus (VZV) are common agents resulting in various forms of clinical manifestation from skin vesicle to disseminated viral infection. The aim of the present study was to develop a real-time PCR and melting curve analysis which detect and differentiate HSV-1, HSV-2, and VZV, to compare with PCR-RFLP using clinical specimens, and to introduce the 4-year experience in the clinical laboratory. Three pairs of primers for HSV-1, HSV-2, and VZV were designed. Primers for human endogenous retrovirus-3 (HERV-3), an internal control, were adopted. A hundred selected specimens and many clinical specimens were tested for methods comparison and assay validation. Increased sensitivity and specificity were obtained from real-time PCR. In review of results of clinical specimens submitted to clinical laboratory, a total of 46 of 3,513 specimens were positive in cerebrospinal fluids, blood, skin vesicles, genital swabs, aqueous humor, and ear discharge. Thus, this method could be a rapid and accurate alternative to virus culture and other molecular tests for detection and typing of HSV-1, HSV-2, and VZV. Yun Ji Hong, Mi Suk Lim, Sang Mee Hwang, Taek Soo Kim, Kyoung Un Park, Junghan Song, and Eui Chong Kim Copyright © 2014 Yun Ji Hong et al. All rights reserved. Effect of the Combination of Gelam Honey and Ginger on Oxidative Stress and Metabolic Profile in Streptozotocin-Induced Diabetic Sprague-Dawley Rats Wed, 16 Apr 2014 13:58:52 +0000 http://www.hindawi.com/journals/bmri/2014/160695/ Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly () SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated () in STZ-induced diabetic rats compared to diabetic control rats. Nur Fathiah Abdul Sani, Levin Kesu Belani, Chong Pui Sin, Siti Nor Amilah Abdul Rahman, Srijit Das, Thent Zar Chi, Suzana Makpol, and Yasmin Anum Mohd Yusof Copyright © 2014 Nur Fathiah Abdul Sani et al. All rights reserved. Plastic Changes in the Spinal Cord in Motor Neuron Disease Wed, 16 Apr 2014 08:56:03 +0000 http://www.hindawi.com/journals/bmri/2014/670756/ In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive), while in the presence of lithium these cells differentiate towards a neuron-like phenotype (βIII-tubulin, NeuN, and calbindin-D28K positive). These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus. Francesco Fornai, Michela Ferrucci, Paola Lenzi, Alessandra Falleni, Francesca Biagioni, Marina Flaibani, Gabriele Siciliano, Francesco Giannessi, and Antonio Paparelli Copyright © 2014 Francesco Fornai et al. All rights reserved. Regulation of p63 Protein Stability via Ubiquitin-Proteasome Pathway Tue, 15 Apr 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/175721/ The p53-related p63 gene encodes multiple protein isoforms, which are involved in a variety of biological activities. p63 protein stability is mainly regulated by the ubiquitin-dependent proteasomal degradation pathway. Several ubiquitin E3 ligases have been identified and some protein kinases as well as other kinds of proteins are involved in regulation of p63 protein stability. These regulators are responsive to diverse extracellular signaling, resulting in changes of the p63 protein levels and impacting different biological processes. Chenghua Li and Zhi-Xiong Xiao Copyright © 2014 Chenghua Li and Zhi-Xiong Xiao. All rights reserved. Metabolomic Prediction of Pregnancy Viability in Superovulated Cattle Embryos and Recipients with Fourier Transform Infrared Spectroscopy Tue, 15 Apr 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/608579/ We analyzed embryo culture medium (CM) and recipient blood plasma using Fourier transform infrared spectroscopy (FTIR) metabolomics to identify spectral models predictive of pregnancy outcome. Embryos collected on Day 6 from superovulated cows in 2 countries were individually cultured in synthetic oviduct fluid medium with BSA for 24 h before embryo transfer. Spent CM, blank controls, and plasma samples (Day 0 and Day 7) were evaluated using FTIR. The spectra obtained were analyzed. The discrimination capability of the classifiers was assessed for accuracy, sensitivity (pregnancy), specificity (nonpregnancy), and area under the ROC curve (AUC). Endpoints considered were Day 60 pregnancy and birth. High AUC was obtained for Day 60 pregnancy in CM within individual laboratories (France , Spain ), while cumulative data decreased the AUC (). Predictions for CM at birth were lower than Day 60 pregnancy. Predictions with plasma at birth improved cumulative over individual results (Day 0: France ; Spain ; cumulative ). Plasma generally predicted pregnancy and birth better than CM. These first results show that FTIR metabolomics could allow the identification of embryos and recipients with improved pregnancy viability, which may contribute to increasing the efficiency of selection schemes based on ET. Marta Muñoz, Asli Uyar, Eva Correia, Claire Ponsart, Catherine Guyader-Joly, Daniel Martínez-Bello, Brigitte Marquant-Le Guienne, Alfonso Fernandez-Gonzalez, Carmen Díez, Jose Nestor Caamaño, Beatriz Trigal, Patrice Humblot, Susana Carrocera, David Martin, Emre Seli, and Enrique Gomez Copyright © 2014 Marta Muñoz et al. All rights reserved. Castanea sativa Mill. Flowers amongst the Most Powerful Antioxidant Matrices: A Phytochemical Approach in Decoctions and Infusions Mon, 14 Apr 2014 17:22:12 +0000 http://www.hindawi.com/journals/bmri/2014/232956/ Infusions and decoction of chestnut tree flowers have been used for different medical purposes, but their phytochemical profile and antioxidant activity are still mostly unknown. Herein, decoctions and infusions of flowers from the two most appreciated chestnut cultivars (longal and judia) in Trás-os-Montes, Portugal, were prepared and characterized with regard to their content in free sugars, organic acids, and phenolic compounds, such as flavonoids and hydrolyzable tannins, and their antioxidant activity. Overall, the decoction of the cultivar judia was the sample with both the highest quantity of flavonoids and antioxidant activity. The phenolic compound with the highest abundance in all samples was trigalloyl-HHDP-glucoside, followed by pentagalloyl glucoside. The sample with the highest quantity of total phenolic compounds was judia infusion, closely followed by longal decoction, which also gave the highest quantities of ellagitannins. Regarding sugars and organic acids, the profiles were more similar. These results corroborate ancestral claims of the health benefits of infusions and decoctions of chestnut flowers. Márcio Carocho, Lillian Barros, Albino Bento, Celestino Santos-Buelga, Patricia Morales, and Isabel C. F. R. Ferreira Copyright © 2014 Márcio Carocho et al. All rights reserved. Preliminary Phytochemical Screening and In Vitro Antioxidant Activities of Parkinsonia aculeata Linn. Sun, 13 Apr 2014 11:12:47 +0000 http://www.hindawi.com/journals/bmri/2014/756184/ Butanol and hexane leaves extracts of Parkinsonia aculeata L. (Fabaceae) were assessed for its antioxidant potential by in vitro methods. Phytochemical analysis and antioxidant activity of plant extracts were studied using different in vitro assays. UPLC analysis of extracts was carried out for the identification of chemical constituents. The total phenolic contents of the butanol and hexane leaf extract were 42 mgGAE/g and 34 mgGAE/g whereas flavonoid contents of these extracts were found to be 0.044 mgRE/g and 0.005 mgRE/g, respectively. Among both extracts, butanol extract shows maximum inhibition (%) of 93.88%, 80.02%, 52.06%, 94.68%, and 69.37% in DPPH, non-site-specific and site-specific, FTC, and TBA assays and absorbance of 0.852 and 0.522 in reducing power and CUPRAC assay at the highest concentration tested. The FRAP and TAC values of butanol extract were found to be 678 μM Fe(II)/g and 36 mgAAE/100 mg. UPLC analysis of extracts revealed the presence of various polyphenols. The tested plant extracts were found to possess potent antioxidant and free radical scavenging activity which may be due to the presence of flavonoids and polyphenols. Sonia Sharma and Adarsh Pal Vig Copyright © 2014 Sonia Sharma and Adarsh Pal Vig. All rights reserved. A Paradoxical Chemoresistance and Tumor Suppressive Role of Antioxidant in Solid Cancer Cells: A Strange Case of Dr. Jekyll and Mr. Hyde Thu, 03 Apr 2014 08:23:03 +0000 http://www.hindawi.com/journals/bmri/2014/209845/ Modulation of intracellular antioxidant concentration is a double-edged sword, with both sides exploited for potential therapeutic benefits. While antioxidants may hamper the efficacy of chemotherapy by scavenging reactive oxygen species and free radicals, it is also possible that antioxidants alleviate unwanted chemotherapy-induced toxicity, thus allowing for increased chemotherapy doses. Under normoxic environment, antioxidants neutralize toxic oxidants, such as reactive oxygen species (ROS), maintaining them within narrow boundaries level. This redox balance is achieved by various scavenging systems such as enzymatic system (e.g., superoxide dismutases, catalase, and peroxiredoxins), nonenzymatic systems (e.g., glutathione, cysteine, and thioredoxin), and metal-binding proteins (e.g., ferritin, metallothionein, and ceruloplasmin) that sequester prooxidant metals inhibiting their participation in redox reactions. On the other hand, therapeutic strategies that promote oxidative stress and eventually tumor cells apoptosis have been explored based on availability of chemotherapy agents that inhibit ROS-scavenging systems. These contradictory assertions suggest that antioxidant supplementation during chemotherapy treatment can have varied outcomes depending on the tumor cellular context. Therefore, understanding the antioxidant-driven molecular pathways might be crucial to design new therapeutic strategies to fight cancer progression. Jolie Kiemlian Kwee Copyright © 2014 Jolie Kiemlian Kwee. All rights reserved. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity Thu, 27 Mar 2014 14:17:26 +0000 http://www.hindawi.com/journals/bmri/2014/709036/ Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode. Sofia Benfeito, Tiago Silva, Jorge Garrido, Paula B. Andrade, M. J. Sottomayor, Fernanda Borges, and E. Manuela Garrido Copyright © 2014 Sofia Benfeito et al. All rights reserved. Significance of Lewis Phenotyping Using Saliva and Gastric Tissue: Comparison with the Lewis Phenotype Inferred from Lewis and Secretor Genotypes Mon, 24 Mar 2014 12:11:12 +0000 http://www.hindawi.com/journals/bmri/2014/573652/ Lewis phenotypes using various types of specimen were compared with the Lewis phenotype predicted from Lewis and Secretor genotypes. This is the first logical step in explaining the association between the Lewis expression and Helicobacter pylori. We performed a study of the followings on 209 patients who underwent routine gastroscopy: erythrocyte and saliva Lewis phenotyping, gastric Lewis phenotyping by the tissue array, and the Lewis and Secretor genes genotyping. The results of phenotyping were as follows [Le(a−b−), Le(a+b−), Le(a−b+), and Le(a+b+), respectively, in order]: erythrocyte (12.4%, 25.8%, 61.2%, and 0.5%); saliva (2.4%, 27.3%, 70.3%, and 0.0%); gastric mucosa (8.1%, 6.7%, 45.5%, and 39.7%). The frequency of Le, , , and alleles was 74.6%, 21.3%, 3.1%, and 1.0%, respectively, among 418 alleles. The saliva Lewis phenotype was completely consistent with the Lewis phenotype inferred from Lewis and Secretor genotypes, but that of gastric mucosa could not be predicted from genotypes. Lewis phenotyping using erythrocytes is only adequate for transfusion needs. Saliva testing for the Lewis phenotype is a more reliable method for determining the peripheral Lewis phenotype of an individual and the gastric Lewis phenotype must be used for the study on the association between Helicobacter pylori and the Lewis phenotype. Yun Ji Hong, Sang Mee Hwang, Taek Soo Kim, Eun Young Song, Kyoung Un Park, Junghan Song, and Kyou-Sup Han Copyright © 2014 Yun Ji Hong et al. All rights reserved. Lack of Association between TLR4 Genetic Polymorphisms and Diabetic Nephropathy in a Chinese Population Sun, 23 Mar 2014 12:37:36 +0000 http://www.hindawi.com/journals/bmri/2014/704167/ Objective. Toll-like receptor 4 (TLR4) plays a central role in innate immunity. Activation of innate immune response and subsequent chronic low-grade inflammation are thought to be involved in the pathogenesis of diabetic nephropathy. In this study, we aimed to investigate whether TLR4 variants are associated with diabetic nephropathy in the Chinese population. Methods. Seven tagging single nucleotide polymorphisms (SNPs) of TLR4 based on HapMap Chinese data were genotyped in 1,455 Chinese type 2 diabetic patients. Of these patients, 622 were diagnosed with diabetic nephropathy and 833 were patients with diabetes for over 5 years but without diabetic nephropathy. Results. None of the SNPs and haplotypes showed significant association to diabetic nephropathy in our study. No association between the SNPs and quantitative traits was observed either. Conclusion. We concluded that common variants within TLR4 genes were not associated with diabetic nephropathy in the Chinese type 2 diabetes patients. Danfeng Peng, Jie Wang, Jiemin Pan, Rong Zhang, Shanshan Tang, Feng Jiang, Miao Chen, Jing Yan, Xue Sun, Tao Wang, Shiyun Wang, Yuqian Bao, and Weiping Jia Copyright © 2014 Danfeng Peng et al. All rights reserved. A Short-Term Incubation with High Glucose Impairs VASP Phosphorylation at Serine 239 in response to the Nitric Oxide/cGMP Pathway in Vascular Smooth Muscle Cells: Role of Oxidative Stress Sun, 23 Mar 2014 08:57:26 +0000 http://www.hindawi.com/journals/bmri/2014/328959/ A reduction of the nitric oxide (NO) action in vascular smooth muscle cells (VSMC) could play a role in the vascular damage induced by the glycaemic excursions occurring in diabetic patients; in this study, we aimed to clarify whether a short-term incubation of cultured VSMC with high glucose reduces the NO ability to increase cGMP and the cGMP ability to phosphorylate VASP at Ser-239. We observed that a 180 min incubation of rat VSMC with 25 mmol/L glucose does not impair the NO-induced cGMP increase but reduces VASP phosphorylation in response to both NO and cGMP with a mechanism blunted by antioxidants. We further demonstrated that high glucose increases radical oxygen species (ROS) production and that this phenomenon is prevented by the PKC inhibitor chelerythrine and the NADPH oxidase inhibitor apocynin. The following sequence of events is supported by these results: (i) in VSMC high glucose activates PKC; (ii) PKC activates NADPH oxidase; (iii) NADPH oxidase induces oxidative stress; (iv) ROS impair the signalling of cGMP, which is involved in the antiatherogenic actions of NO. Thus, high glucose, via oxidative stress, can reduce the cardiovascular protection conferred by the NO/cGMP pathway via phosphorylation of the cytoskeleton protein VASP in VSMC. Isabella Russo, Michela Viretto, Gabriella Doronzo, Cristina Barale, Luigi Mattiello, Giovanni Anfossi, and Mariella Trovati Copyright © 2014 Isabella Russo et al. All rights reserved. Role of Plasma Membrane Caveolae/Lipid Rafts in VEGF-Induced Redox Signaling in Human Leukemia Cells Tue, 11 Mar 2014 09:24:57 +0000 http://www.hindawi.com/journals/bmri/2014/857504/ Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets. Cristiana Caliceti, Laura Zambonin, Benedetta Rizzo, Diana Fiorentini, Francesco Vieceli Dalla Sega, Silvana Hrelia, and Cecilia Prata Copyright © 2014 Cristiana Caliceti et al. All rights reserved. Role of G Protein-Coupled Receptors in Control of Dendritic Cell Migration Mon, 10 Mar 2014 13:55:50 +0000 http://www.hindawi.com/journals/bmri/2014/738253/ Dendritic cells (DCs) are highly efficient antigen-presenting cells. The migratory properties of DCs give them the capacity to be a sentinel of the body and the vital role in the induction and regulation of adaptive immune responses. Therefore, it is important to understand the mechanisms in control of migration of DCs to lymphoid and nonlymphoid tissues. This may provide us novel insight into the clinical treatment of diseases such as autoimmune disease, infectious disease, and tumor. The chemotactic G protein-coupled receptors (GPCR) play a vital role in control of DCs migration. Here, we reviewed the recent advances regarding the role of GPCR in control of migration of subsets of DCs, with a focus on the chemokine receptors. Understanding subsets of DCs migration could provide a rational basis for the design of novel therapies in various clinical conditions. Yuan Liu and Guixiu Shi Copyright © 2014 Yuan Liu and Guixiu Shi. All rights reserved. Role of Methylglyoxal in Alzheimer’s Disease Sun, 09 Mar 2014 11:29:36 +0000 http://www.hindawi.com/journals/bmri/2014/238485/ Alzheimer’s disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer’s disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer’s disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer’s disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer’s disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer’s disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease. Cristina Angeloni, Laura Zambonin, and Silvana Hrelia Copyright © 2014 Cristina Angeloni et al. All rights reserved. PPAR-γ Impairment Alters Peroxisome Functionality in Primary Astrocyte Cell Cultures Tue, 04 Mar 2014 10:03:46 +0000 http://www.hindawi.com/journals/bmri/2014/546453/ Peroxisomes provide glial cells with protective functions against the harmful effects of H2O2 on neurons and peroxisome impairment results in nervous lesions. Agonists of the γ-subtype of the Peroxisome-Proliferator-Activated-Receptors (PPAR) have been proposed as neuroprotective agents in neurodegenerative disorders. Nevertheless, the role of PPAR-γ alterations in pathophysiological mechanisms and the relevance of peroxisome functions in the PPAR-γ effects are not yet clear. In a primary cell culture of rat astrocytes, the irreversible PPAR-γ antagonist GW9662 concentration-dependently decreased the activity of catalase, the most important antioxidant defense enzyme in peroxisomes. Catalase functionality recovered in a few days and the PPAR-γ agonist rosiglitazone promoted reversal of enzymatic damage. The reversible antagonist G3335 reduced both the activity and expression of catalase in a rosiglitazone-prevented manner. G3335 reduced also the glutathione reductase expression, indicating that enzyme involved in glutathione regeneration was compromised. Neither the PPAR-α target gene Acyl-Coenzyme-A-oxidase-1 nor the mitochondrial detoxifying enzyme NADH:ubiquinone-oxidoreductase (NDFUS3) was altered by PPAR-γ inhibition. In conclusion, PPAR-γ inhibition induced impairment of catalase in astrocytes. A general decrease of the antioxidant defenses of the cell suggests that a PPAR-γ hypofunction could participate in neurodegenerative mechanisms through peroxisomal damage. This series of experiments could be a useful model for studying compounds able to restore peroxisome functionality. Lorenzo Di Cesare Mannelli, Matteo Zanardelli, Laura Micheli, and Carla Ghelardini Copyright © 2014 Lorenzo Di Cesare Mannelli et al. All rights reserved. Hepatitis B Virus X Upregulates HuR Protein Level to Stabilize HER2 Expression in Hepatocellular Carcinoma Cells Thu, 27 Feb 2014 13:48:52 +0000 http://www.hindawi.com/journals/bmri/2014/827415/ Hepatitis B virus- (HBV-) associated hepatocellular carcinoma (HCC) is the most common type of liver cancer. However, the underlying mechanism of HCC tumorigenesis is very complicated and HBV-encoded X protein (HBx) has been reported to play the most important role in this process. Activation of downstream signal pathways of epidermal growth factor receptor (EGFR) family is known to mediate HBx-dependent HCC tumor progression. Interestingly, HER2 (also known as ErbB2/Neu/EGFR2) is frequently overexpressed in HBx-expressing HCC patients and is associated with their poor prognosis. However, it remains unclear whether and how HBx regulates HER2 expression. In this study, our data showed that HBx expression increased HER2 protein level via enhancing its mRNA stability. The induction of RNA-binding protein HuR expression by HBx mediated the HER2 mRNA stabilization. Finally, the upregulated HER2 expression promoted the migration ability of HBx-expressing HCC cells. These findings deciphered the molecular mechanism of HBx-mediated HER2 upregulation in HBV-associated HCC. Chao-Ming Hung, Wei-Chien Huang, Hsiao-Lin Pan, Pei-Hsuan Chien, Chih-Wen Lin, Lei-Chin Chen, Yu-Fong Chien, Ching-Chiao Lin, Kar-Hee Leow, Wen-Shu Chen, Jhen-Yu Chen, Chien-Yi Ho, Pao-Sheng Hou, and Yun-Ju Chen Copyright © 2014 Chao-Ming Hung et al. All rights reserved. Nuclear Nox4-Derived Reactive Oxygen Species in Myelodysplastic Syndromes Wed, 26 Feb 2014 07:31:48 +0000 http://www.hindawi.com/journals/bmri/2014/456937/ A role for intracellular ROS production has been recently implicated in the pathogenesis and progression of a wide variety of neoplasias. ROS sources, such as NAD(P)H oxidase (Nox) complexes, are frequently activated in AML (acute myeloid leukemia) blasts and strongly contribute to their proliferation, survival, and drug resistance. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop AML. The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is the genomic instability. NADPH oxidases are now recognized to have specific subcellular localizations, this targeting to specific compartments for localized ROS production. Local Nox-dependent ROS production in the nucleus may contribute to the regulation of redox-dependent cell growth, differentiation, senescence, DNA damage, and apoptosis. We observed that Nox1, 2, and 4 isoforms and p22phox and Rac1 subunits are expressed in MDS/AML cell lines and MDS samples, also in the nuclear fractions. Interestingly, Nox4 interacts with ERK and Akt1 within nuclear speckle domain, suggesting that Nox4 could be involved in regulating gene expression and splicing factor activity. These data contribute to the elucidation of the molecular mechanisms used by nuclear ROS to drive MDS evolution to AML. Marianna Guida, Tullia Maraldi, Francesca Beretti, Matilde Y. Follo, Lucia Manzoli, and Anto De Pol Copyright © 2014 Marianna Guida et al. All rights reserved. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability Mon, 24 Feb 2014 09:02:07 +0000 http://www.hindawi.com/journals/bmri/2014/959420/ Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids. We analyzed whether reduced urea excretion was a consequence of higher ; (nitrite, nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion. There were no differences in plasma nitrate or nitrite. and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithine when compared with controls, whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability. David Sabater, Silvia Agnelli, Sofía Arriarán, José-Antonio Fernández-López, María del Mar Romero, Marià Alemany, and Xavier Remesar Copyright © 2014 David Sabater et al. All rights reserved. A Novel Mutation in Leptin Gene Is Associated with Severe Obesity in Chinese Individuals Sun, 23 Feb 2014 11:30:33 +0000 http://www.hindawi.com/journals/bmri/2014/912052/ Obesity is a clinical syndrome which is driven by interactions between multiple genetic and environmental factors. Monogenic obesity is a rare type of obesity which is caused by a mutation in a single gene. Patients with monogenic obesity may develop early onset of obesity and severe metabolic abnormalities. In this study, we screened mutations of LEP in a total of 135 Chinese individuals including 35 obese patients whose BMI ≥32 kg/m2 and 100 controls with BMI <25 kg/m2. Moreover, detailed information and clinical measurements of the participants were also collected. Finally, we identified a novel nonsynonymous mutation H118L in exon 3 of LEP in one patient with BMI 46.0 kg/m2. This mutation was not identified in the controls. We speculated that the mutation H118L in LEP might be associated with severe obesity in Chinese subjects. However, the substantial mechanism should be further investigated. Yue Zhao, Nanchao Hong, Xiao Liu, Beibei Wu, Shanshan Tang, Jianjun Yang, Cheng Hu, and Weiping Jia Copyright © 2014 Yue Zhao et al. All rights reserved. Trichostatin A Suppresses EGFR Expression through Induction of MicroRNA-7 in an HDAC-Independent Manner in Lapatinib-Treated Cells Sun, 23 Feb 2014 00:00:00 +0000 http://www.hindawi.com/journals/bmri/2014/168949/ Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, has been shown to improve the survival rate of patients with advanced HER2-positive breast cancers. However, the off-target activity of lapatinib in inducing EGFR expression without tyrosine kinase activity was demonstrated to render HER2-negative breast cancer cells more metastatic, suggesting a limitation to the therapeutic effectiveness of this dual inhibitor in HER2-heterogeneous tumors. Therefore, targeting EGFR expression may be a feasible approach to improve the anticancer efficiency of lapatinib-based therapy. Inhibition of HDAC has been previously reported to epigenetically suppress EGFR protein expression. In this study, however, our data indicated that treatment with HDAC inhibitors trichostatin A (TSA), but not suberoylanilide hydroxamic acid (SAHA) or HDAC siRNA, can attenuate both protein and mRNA expressions of EGFR in lapatinib-treated triple-negative breast cancer cells, suggesting that TSA may suppress EGFR expression independently of HDAC inhibition. Nevertheless, TSA reduced EGFR 3′UTR activity and induced the gene expression of microRNA-7, a known EGFR-targeting microRNA. Furthermore, treatment with microRNA-7 inhibitor attenuated TSA-mediated EGFR suppression. These results suggest that TSA induced microRNA-7 expression to downregulate EGFR expression in an HDAC-independent manner. Chih-Yen Tu, Chia-Hung Chen, Te-Chun Hsia, Min-Hsiang Hsu, Ya-Ling Wei, Meng-Chieh Yu, Wen-Shu Chen, Ke-Wei Hsu, Ming-Hsin Yeh, Liang-Chih Liu, Yun-Ju Chen, and Wei-Chien Huang Copyright © 2014 Chih-Yen Tu et al. All rights reserved. Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease Thu, 20 Feb 2014 10:53:29 +0000 http://www.hindawi.com/journals/bmri/2014/131737/ Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ) is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) supported by concomitant decreases in nitric oxide (NO) signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders. Natalie Sampson, Peter Berger, and Christoph Zenzmaier Copyright © 2014 Natalie Sampson et al. All rights reserved. Effects of Dietary Cholesterol and Its Oxidation Products on Pathological Lesions and Cholesterol and Lipid Oxidation in the Rabbit Liver Thu, 20 Feb 2014 09:28:10 +0000 http://www.hindawi.com/journals/bmri/2014/598612/ This study was conducted to determine the effects of dietary cholesterol (CHO) and cholesterol oxidation products (COPs) on the induction of pathological lesions in rabbit liver tissues. Liver lesions were induced only when the levels of CHO and COPs in the diet were very high. The amount of CHO measured in the liver increased when dietary CHO was increased; by comparison, dietary COPs affected liver CHO amounts to a lesser extent. The TBARS (thiobarbituric acid reactive substances) value measured for the liver samples also increased when dietary CHO and COP levels were elevated, and the TBARS value was more strongly affected by the amount of COPs in the diet than by the amount of CHO. At 6 and 12 weeks, COP levels were the highest in the group that received 1.2 g CHO + 0.8 g COPs, followed by the 0.5 g CHO + 0.5 g COPs and 1.6 g CHO + 0.4 g COPs groups; the control (0 g) group showed the lowest COP levels among all groups. In this study, we found that not only dietary CHO but also COPs were involved in hypercholesterolemia induced liver lesions when the amount of CHO and COPs was high. Sun Jin Hur, Ki Chang Nam, Byungrok Min, Min Du, Kwon Il Seo, and Dong Uk Ahn Copyright © 2014 Sun Jin Hur et al. All rights reserved. Characterization of -Treated Rice Husk Adsorbent and Adsorption of Copper(II) from Aqueous Solution Tue, 11 Feb 2014 09:38:39 +0000 http://www.hindawi.com/journals/bmri/2014/496878/ Rice husk, a surplus agricultural byproduct, was applied to the sorption of copper from aqueous solutions. Chemical modifications by treating rice husk with H3PO4 increased the sorption ability of rice husk for Cu(II). This work investigated the sorption characteristics for Cu(II) and examined the optimum conditions of the sorption processes. The elemental compositions of native rice husk and H3PO4-treated rice husk were determined by X-ray fluorescence (XRF) analysis. The scanning electron microscopic (SEM) analysis was carried out for structural and morphological characteristics of H3PO4-treated rice husk. The surface functional groups (i.e., carbonyl, carboxyl, and hydroxyl) of adsorbent were examined by Fourier Transform Infrared Technique (FT-IR) and contributed to the adsorption for Cu(II). Adsorption isotherm experiments were carried out at room temperature and the data obtained from batch studies fitted well with the Langmuir and Freundlich models with of 0.999 and 0.9303, respectively. The maximum sorption amount was 17.0358 mg/g at a dosage of 2 g/L after 180 min. The results showed that optimum pH was attained at pH 4.0. The equilibrium data was well represented by the pseudo-second-order kinetics. The percentage removal for Cu(II) approached equilibrium at 180 min with 88.9% removal. Ying Zhang, Ru Zheng, Jiaying Zhao, Fang Ma, Yingchao Zhang, and Qingjuan Meng Copyright © 2014 Ying Zhang et al. All rights reserved. ROS, Notch, and Wnt Signaling Pathways: Crosstalk between Three Major Regulators of Cardiovascular Biology Tue, 04 Feb 2014 09:41:44 +0000 http://www.hindawi.com/journals/bmri/2014/318714/ Reactive oxygen species (ROS), traditionally viewed as toxic by-products that cause damage to biomolecules, now are clearly recognized as key modulators in a variety of biological processes and pathological states. The development and regulation of the cardiovascular system require orchestrated activities; Notch and Wnt/β-catenin signaling pathways are implicated in many aspects of them, including cardiomyocytes and smooth muscle cells survival, angiogenesis, progenitor cells recruitment and differentiation, arteriovenous specification, vascular cell migration, and cardiac remodelling. Several novel findings regarding the role of ROS in Notch and Wnt/β-catenin modulation prompted us to review their emerging function in the cardiovascular system during embryogenesis and postnatally. C. Caliceti, P. Nigro, P. Rizzo, and R. Ferrari Copyright © 2014 C. Caliceti et al. All rights reserved. Evaluation of Buspirone on Streptozotocin Induced Type 1 Diabetes and Its Associated Complications Mon, 20 Jan 2014 11:27:01 +0000 http://www.hindawi.com/journals/bmri/2014/948427/ We have evaluated the effect of buspirone (1.5 mg/kg/day, p.o.) type 1 diabetes induced cardiovascular complications induced by streptozotocin (STZ, 45 mg/kg, i.v.) in Wistar rats. Various biochemical, cardiovascular, and hemodynamic parameters were measured at the end of 8 weeks of treatment. STZ produced significant hyperglycaemia, hypoinsulinemia, and dyslipidemia, which was prevented by buspirone treatment. STZ produced increase in serum creatinine, urea, lactate dehydrogenase, creatinine kinase, and C-reactive protein levels and treatment with buspirone produced reduction in these levels. STZ produced increase in cardiac and LV hypertrophy index, LV/RV ratio, and LV collagen, which were decreased by buspirone treatment. Buspirone also prevented STZ induced hemodynamic alterations and oxidative stress. These results were further supported by histopathological studies in which buspirone showed marked reduction in fibrosis and cardiac fiber disarray. In conclusion, our data suggests that buspirone is beneficial as an antidiabetic agent in type 1 diabetes mellitus and also prevents its cardiac complications. Suchi Raghunathan, Pratik Tank, Shraddha Bhadada, and Bhoomika Patel Copyright © 2014 Suchi Raghunathan et al. All rights reserved. PLP-Dependent Enzymes Wed, 15 Jan 2014 09:53:51 +0000 http://www.hindawi.com/journals/bmri/2014/856076/ Alessandro Paiardini, Roberto Contestabile, Ashley M. Buckle, and Barbara Cellini Copyright © 2014 Alessandro Paiardini et al. All rights reserved. The CCN Family Proteins: Modulators of Bone Development and Novel Targets in Bone-Associated Tumors Tue, 14 Jan 2014 14:20:27 +0000 http://www.hindawi.com/journals/bmri/2014/437096/ The CCN family of proteins is composed of six extracellular matrix-associated proteins that play crucial roles in skeletal development, wound healing, fibrosis, and cancer. Members of the CCN family share four conserved cysteine-rich modular domains that trigger signal transduction in cell adhesion, migration, proliferation, differentiation, and survival through direct binding to specific integrin receptors and heparan sulfate proteoglycans. In the present review, we discuss the roles of the CCN family proteins in regulating resident cells of the bone microenvironment. In vertebrate development, the CCN family plays a critical role in osteo/chondrogenesis and vasculo/angiogenesis. These effects are regulated through signaling via integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch via direct binding to CCN family proteins. Due to the important roles of CCN family proteins in skeletal development, abnormal expression of CCN proteins is related to the tumorigenesis of primary bone tumors such as osteosarcoma, Ewing sarcoma, and chondrosarcoma. Additionally, emerging studies have suggested that CCN proteins may affect progression of secondary metastatic bone tumors by moderating the bone microenvironment. CCN proteins could therefore serve as potential therapeutic targets for drug development against primary and metastatic bone tumors. Po-Chun Chen, Hsu-Chen Cheng, Shun-Fa Yang, Chiao-Wen Lin, and Chih-Hsin Tang Copyright © 2014 Po-Chun Chen et al. All rights reserved. Oxidative Stress and Bone Resorption Interplay as a Possible Trigger for Postmenopausal Osteoporosis Sun, 12 Jan 2014 10:15:40 +0000 http://www.hindawi.com/journals/bmri/2014/569563/ The underlying mechanism in postmenopausal osteoporosis (PO) is an imbalance between bone resorption and formation. This study was conducted to investigate whether oxidative stress (OxS) might have a role in this derangement of bone homeostasis. In a sample of 167 postmenopausal women, we found that increased serum levels of a lipid peroxidation marker, hydroperoxides, were negatively and independently associated with decreased bone mineral density (BMD) in total body (, ), lumbar spine (, ), and total hip (, ), as well as with increased bone resorption rate (, ), as assessed by the serum concentration of C-terminal telopeptide of type I collagen (CTX-1). On the contrary, the OxS marker failed to be correlated with the serum levels of bone-specific alkaline phosphatase (BAP), that is, elective marker of bone formation. Importantly, multiple regression analysis revealed that hydroperoxides is a determinant factor for the statistical association between lumbar spine BMD and CTX-1 levels. Taken together, our data suggest that OxS might mediate, by enhancing bone resorption, the uncoupling of bone turnover that underlies PO development. Carlo Cervellati, Gloria Bonaccorsi, Eleonora Cremonini, Arianna Romani, Enrica Fila, Maria Cristina Castaldini, Stefania Ferrazzini, Melchiorre Giganti, and Leo Massari Copyright © 2014 Carlo Cervellati et al. All rights reserved. Systemic Oxidative Stress and Conversion to Dementia of Elderly Patients with Mild Cognitive Impairment Sun, 12 Jan 2014 10:14:06 +0000 http://www.hindawi.com/journals/bmri/2014/309507/ Mild cognitive impairment (MCI) is regarded as a prodromal phase of late onset Alzheimer’s disease (LOAD). It has been proposed that oxidative stress (OxS) might be implicated in the pathogenesis of LOAD. The aim of this study was to investigate whether a redox imbalance measured as serum level of hydroperoxides (i.e., by-products of lipid peroxidation) and/or serum antioxidant capacity might be predictive of the clinical progression of MCI to LOAD. The levels of these two markers were measured in 111 patients with MCI (follow-up: years), 105 patients with LOAD, and 118 nondemented healthy controls. Multivariate analysis adjusted for potential confounding factors, including age, gender, smoking, and comorbidities, showed a significant increase () in baseline levels of OxS in MCI and LOAD as compared to cognitive healthy controls. No differences in either of OxS markers were found by comparing MCI patients who converted () or not converted () to LOAD. Overall, these results suggest that systemic OxS might be a precocious feature of MCI and LOAD. However, the role of OxS as an early prognostic marker of progression to LOAD needs further investigations. Carlo Cervellati, Arianna Romani, Davide Seripa, Eleonora Cremonini, Cristina Bosi, Stefania Magon, Carlo M. Bergamini, Giuseppe Valacchi, Alberto Pilotto, and Giovanni Zuliani Copyright © 2014 Carlo Cervellati et al. All rights reserved. Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target? Thu, 09 Jan 2014 09:57:21 +0000 http://www.hindawi.com/journals/bmri/2014/108516/ Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines), the aspartate aminotransferase (AspAT, involved in the protein biosynthesis), and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism). Thales Kronenberger, Jasmin Lindner, Kamila A. Meissner, Flávia M. Zimbres, Monika A. Coronado, Frank M. Sauer, Isolmar Schettert, and Carsten Wrenger Copyright © 2014 Thales Kronenberger et al. All rights reserved. Physalis alkekengi Carotenoidic Extract Inhibitor of Soybean Lipoxygenase-1 Activity Thu, 09 Jan 2014 08:21:28 +0000 http://www.hindawi.com/journals/bmri/2014/589168/ The aim of this study was to evaluate the effect of the carotenoidic saponified extract of Physalis alkekengi sepals (PA) towards the lipoxygenase (LOX) oxidation of linoleic acid. Lipoxygenase activity in the presence of carotenoids, standard and from extract, was followed by its kinetic behaviour determining the changes in absorption at 234 nm. The standard carotenoids used were -carotene (-car), lutein (Lut), and zeaxanthin (Zea). The calculated enzymatic specific activity (ESA) after 600 s of reaction proves that PA carotenoidic extract has inhibitory effect on LOX oxidation of linoleic acid. A longer polyenic chain of carotenoid structure gives a higher ESA during the first reaction seconds. This situation is not available after 600 s of reaction and may be due to a destruction of this structure by cooxidation of carotenoids, besides the classical LOX reaction. The PA carotenoidic extract inhibiting the LOX-1 reaction can be considered a source of lipoxygenase inhibitors. Veronica Sanda Chedea, Adela Pintea, Andrea Bunea, Cornelia Braicu, Andreea Stanila, and Carmen Socaciu Copyright © 2014 Veronica Sanda Chedea et al. All rights reserved. Chlorotoxin-Fc Fusion Inhibits Release of MMP-2 from Pancreatic Cancer Cells Wed, 08 Jan 2014 10:05:30 +0000 http://www.hindawi.com/journals/bmri/2014/152659/ Chlorotoxin (CTX) is a 36-amino acid peptide derived from Leiurus quinquestriatus (scorpion) venom, which inhibits low-conductance chloride channels in colonic epithelial cells. It has been reported that CTX also binds to matrix metalloproteinase-2 (MMP-2), membrane type-1 MMP, and tissue inhibitor of metalloproteinase-2, as well as CLC-3 chloride ion channels and other proteins. Pancreatic cancer cells require the activation of MMP-2 during invasion and migration. In this study, the fusion protein was generated by joining the CTX peptide to the amino terminus of the human IgG-Fc domain without a hinge domain, the monomeric form of chlorotoxin (M-CTX-Fc). The resulting fusion protein was then used to target pancreatic cancer cells (PANC-1) in vitro. M-CTX-Fc decreased MMP-2 release into the media of PANC-1 cells in a dose-dependent manner. M-CTX-Fc internalization into PANC-1 cells was observed. When the cells were treated with chlorpromazine (CPZ), the internalization of the fusion protein was reduced, implicating a clathrin-dependent internalization mechanism of M-CTX-Fc in PANC-1 cells. Furthermore, M-CTX-Fc clearly exhibited the inhibition of the migration depending on the concentration, but human IgG, as negative control of Fc, was not affected. The M-CTX-Fc may be an effective instrument for targeting pancreatic cancer. Samah El-Ghlban, Tomonari Kasai, Tsukasa Shigehiro, Hong Xia Yin, Sreeja Sekhar, Mikiko Ida, Anna Sanchez, Akifumi Mizutani, Takayuki Kudoh, Hiroshi Murakami, and Masaharu Seno Copyright © 2014 Samah El-Ghlban et al. All rights reserved. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress Thu, 02 Jan 2014 11:32:14 +0000 http://www.hindawi.com/journals/bmri/2014/608979/ Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases. Subhadeep Chakrabarti, Forough Jahandideh, and Jianping Wu Copyright © 2014 Subhadeep Chakrabarti et al. All rights reserved. Novel Strategies for the Treatment of Chondrosarcomas: Targeting Integrins Mon, 30 Dec 2013 14:03:59 +0000 http://www.hindawi.com/journals/bmri/2013/396839/ Chondrosarcomas are a heterogeneous group of malignant bone tumors that are characterized by the production of cartilaginous extracellular matrix. They are the second most frequently occurring type of bone malignancy. Surgical resection remains the primary mode of treatment for chondrosarcomas, since conventional chemotherapy and radiotherapy are largely ineffective. Treatment of patients with high-grade chondrosarcomas is particularly challenging, owing to the lack of effective adjuvant therapies. Integrins are cell surface adhesion molecules that regulate a variety of cellular functions. They have been implicated in the initiation, progression, and metastasis of solid tumors. Deregulation of integrin expression and/or signaling has been identified in many chondrosarcomas. Therefore, the development of new drugs that can selectively target regulators of integrin gene expression and ligand-integrin signaling might hold great promise for the treatment of these cancers. In this review, we provide an overview of the current understanding of how growth factors, chemokines/cytokines, and other inflammation-related molecules can control the expression of specific integrins to promote cell migration. We also review the roles of specific subtypes of integrins and their signaling mechanisms, and discuss how these might be involved in tumor growth and metastasis. Finally, novel therapeutic strategies for targeting these molecules will be discussed. Jui-Chieh Chen, Yi-Chin Fong, and Chih-Hsin Tang Copyright © 2013 Jui-Chieh Chen et al. All rights reserved. Poly-S-Nitrosated Albumin as a Safe and Effective Multifunctional Antitumor Agent: Characterization, Biochemistry and Possible Future Therapeutic Applications Mon, 30 Dec 2013 08:07:59 +0000 http://www.hindawi.com/journals/bmri/2013/353892/ Nitric oxide (NO) is a ubiquitous molecule involved in multiple cellular functions. Inappropriate production of NO may lead to disease states. To date, pharmacologically active compounds that release NO within the body, such as organic nitrates, have been used as therapeutic agents, but their efficacy is significantly limited by unwanted side effects. Therefore, novel NO donors with better pharmacological and pharmacokinetic properties are highly desirable. The S-nitrosothiol fraction in plasma is largely composed of endogenous S-nitrosated human serum albumin (Mono-SNO-HSA), and that is why we are testing whether this albumin form can be therapeutically useful. Recently, we developed SNO-HSA analogs such as SNO-HSA with many conjugated SNO groups (Poly-SNO-HSA) which were prepared using chemical modification. Unexpectedly, we found striking inverse effects between Poly-SNO-HSA and Mono-SNO-HSA. Despite the fact that Mono-SNO-HSA inhibits apoptosis, Poly-SNO-HSA possesses very strong proapoptotic effects against tumor cells. Furthermore, Poly-SNO-HSA can reduce or perhaps completely eliminate the multidrug resistance often developed by cancer cells. In this review, we forward the possibility that Poly-SNO-HSA can be used as a safe and effective multifunctional antitumor agent. Yu Ishima, Ulrich Kragh-Hansen, Toru Maruyama, and Masaki Otagiri Copyright © 2013 Yu Ishima et al. All rights reserved. Heavy Water Reduces GFP Expression in Prokaryotic Cell-Free Assays at the Translation Level While Stimulating Its Transcription Wed, 25 Dec 2013 13:39:15 +0000 http://www.hindawi.com/journals/bmri/2013/592745/ The in vitro proliferation of prokaryotic and eukaryotic cells is remarkably hampered in the presence of heavy water (D2O). Impairment of gene expression at the transcription or translation level can be the base for this effect. However, insights into the underlying mechanisms are lacking. Here, we employ a cell-free expression system for the quantitative analysis of the effect of increasing percentages of D2O on the kinetics of in-vitro GFP expression. Experiments are designed to discriminate the rates of transcription, translation, and protein folding using pDNA and mRNA vectors, respectively. We find that D2O significantly stimulates GFP expression at the transcription level but acts as a suppressor at translation and maturation (folding) in a linear dose-dependent manner. At a D2O concentration of 60%, the GFP expression rate was reduced to 40% of an undisturbed sample. We observed a similar inhibition of GFP expression by D2O in a recombinant Escherichia coli strain, although the inhibitory effect is less pronounced. These results demonstrate the suitability of cell-free systems for quantifying the impact of heavy water on gene expression and establish a platform to further assess the potential therapeutic use of heavy water as antiproliferative agent. Luisa S. Hohlefelder, Tobias Stögbauer, Madeleine Opitz, Thomas M. Bayerl, and Joachim O. Rädler Copyright © 2013 Luisa S. Hohlefelder et al. All rights reserved. Antibacterial Activity of Nanocomposites of Copper and Cellulose Tue, 24 Dec 2013 17:00:05 +0000 http://www.hindawi.com/journals/bmri/2013/280512/ The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings. Ricardo J. B. Pinto, Sara Daina, Patrizia Sadocco, Carlos Pascoal Neto, and Tito Trindade Copyright © 2013 Ricardo J. B. Pinto et al. All rights reserved. Gemifloxacin, a Fluoroquinolone Antimicrobial Drug, Inhibits Migration and Invasion of Human Colon Cancer Cells Tue, 10 Dec 2013 17:58:00 +0000 http://www.hindawi.com/journals/bmri/2013/159786/ Gemifloxacin (GMF) is an orally administered broad-spectrum fluoroquinolone antimicrobial agent used to treat acute bacterial exacerbation of pneumonia and bronchitis. Although fluoroquinolone antibiotics have also been found to have anti-inflammatory and anticancer effects, studies on the effect of GMF on treating colon cancer have been relatively rare. To the best of our knowledge, this is the first report to describe the antimetastasis activities of GMF in colon cancer and the possible mechanisms involved. Results have shown that GMF inhibits the migration and invasion of colon cancer SW620 and LoVo cells and causes epithelial mesenchymal transition (EMT). In addition, GMF suppresses the activation of NF-κB and cell migration and invasion induced by TNF-α and inhibits the TAK1/TAB2 interaction, resulting in decreased IκB phosphorylation and NF-κB nuclear translocation in SW620 cells. Furthermore, Snail, a critical transcriptional factor of EMT, was downregulated after GMF treatment. Overexpression of Snail by cDNA transfection significantly decreases the inhibitory effect of GMF on EMT and cell migration and invasion. In conclusion, GMF may be a novel anticancer agent for the treatment of metastasis in colon cancer. Jung-Yu Kan, Ya-Ling Hsu, Yen-Hsu Chen, Tun-Chieh Chen, Jaw-Yuan Wang, and Po-Lin Kuo Copyright © 2013 Jung-Yu Kan et al. All rights reserved. Analysis of the Anticancer Phytochemicals in Andrographis paniculata Nees. under Salinity Stress Tue, 26 Nov 2013 13:18:22 +0000 http://www.hindawi.com/journals/bmri/2013/319047/ Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm−1) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm−1 led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions. Daryush Talei, Alireza Valdiani, Mahmood Maziah, Sreenivasa Rao Sagineedu, and Mohd Said Saad Copyright © 2013 Daryush Talei et al. All rights reserved. Association of Genetic Variants of BMP4 with Type 2 Diabetes Mellitus and Clinical Traits in a Chinese Han Population Mon, 18 Nov 2013 18:22:15 +0000 http://www.hindawi.com/journals/bmri/2013/238150/ BMP4 is one of the transforming growth factor-β superfamily, which can participate in adipogenesis. Gene encoding BMP4 is acknowledged as a convincing candidate that may contribute to both glucose and lipid metabolism. In this paper, we aimed to test the impacts of BMP4 variants on type 2 diabetes in a large sample of Chinese population. We genotyped 10 tagging single nucleotide polymorphisms within the BMP4 region in 6822 participants and acquired detailed clinical investigations and biochemistry measurements. We found that BMP4 rs8014363 showed nominal association towards type 2 diabetes, with the T allele conferring a high risk of type 2 diabetes (, 95%CI 0.999–1.229, for allele; , 95%CI 1.000–1.231, for genotype), but it was no longer statistically significant after adjusting for multiple testing (empirical for allele based on 10,000 permutations). Moreover, we observed a significant association of rs8014363 with triglyceride level and a trend towards association with high-density lipoprotein cholesterol after adjusting for age, gender, and BMI ( and 0.068, resp.). Our data suggested that the genetic variants of BMP4 may not play a dominant role in glucose metabolism in Chinese Han population, but a minor effect cannot be ignored. Shanshan Tang, Rong Zhang, Weihui Yu, Feng Jiang, Jie Wang, Miao Chen, Danfeng Peng, Jing Yan, Yuqian Bao, and Weiping Jia Copyright © 2013 Shanshan Tang et al. All rights reserved. Parthenium hysterophorus: A Probable Source of Anticancer, Antioxidant and Anti-HIV Agents Sun, 17 Nov 2013 11:15:26 +0000 http://www.hindawi.com/journals/bmri/2013/810734/ The present work reports the anticancer, antioxidant, lipo-protective, and anti-HIV activities of phytoconstituents present in P. hysterophorus leaf. Dried leaf samples were sequentially extracted with nonpolar and polar solvents. Ethanol fraction showed noticeable cytotoxic activity (81–85%) in SRB assay against MCF-7 and THP-1 cancer cell lines at 100 μg/ml concentration, while lower activity was observed with DU-145 cell line. The same extract exhibited 17–98% growth inhibition of HL-60 cancer cell lines in MTT assay, showing concentration dependent response. Ethanol extract caused 12% reduction in mitochondrial membrane potential and 10% increment in sub G1 population of HL-60 cell lines. Several leaf fractions, namely, ethyl acetate, ethanol, and aqueous fractions exhibited considerable reducing capability at higher concentrations. Most of the extracts demonstrated appreciable (>75%) metal ion chelating and hydroxyl radical scavenging activities at 200 µg/ml. All the extracts except aqueous fraction accounted for about 70–80% inhibition of lipid peroxidation in rat liver homogenate indicating protective response against membrane damage. About 40% inhibition of reverse transcriptase (RT) activity was observed in hexane fraction in anti-HIV assay at 6.0 µg/ml concentration. The study showed that phytochemicals present in P. hysterophorus leaf have considerable potential as cytotoxic and antioxidant agents with low to moderate anti-HIV activity. Shashank Kumar, Gousia Chashoo, Ajit K. Saxena, and Abhay K. Pandey Copyright © 2013 Shashank Kumar et al. All rights reserved. Depletion of Luminal Pyridine Nucleotides in the Endoplasmic Reticulum Activates Autophagy with the Involvement of mTOR Pathway Sun, 17 Nov 2013 09:00:58 +0000 http://www.hindawi.com/journals/bmri/2013/942431/ It has been recently shown that redox imbalance of luminal pyridine nucleotides in the endoplasmic reticulum (ER) together with oxidative stress results in the activation of autophagy. In the present study we demonstrated that decrease of luminal NADPH/NADP+ ratio alone by metyrapone was sufficient to promote the mechanism of “self-eating” detected by the activation of LC3. Depletion of luminal NADPH had also significant effect on the key proteins of mTOR pathway, which got inactivated by dephosphorylation. These findings were also confirmed by silencing the proteins (glucose-6-phosphate transporter and hexose-6-phosphate dehydrogenase) responsible for NADPH generation in the ER lumen. However, silencing the key components and addition of metyrapone had different effects on downstream substrates 4EBP1 and p70S6K of mTOR. The applied treatments did not compromise the viability of the cells. Our data suggest that ER stress caused by luminal NADPH depletion activates a pro-survival autophagic mechanism firmly coupled to the activation of mTOR pathway. Orsolya Kapuy and Gábor Bánhegyi Copyright © 2013 Orsolya Kapuy and Gábor Bánhegyi. All rights reserved. Allicin Attenuates Inflammation and Suppresses HLA-B27 Protein Expression in Ankylosing Spondylitis Mice Wed, 13 Nov 2013 13:27:29 +0000 http://www.hindawi.com/journals/bmri/2013/171573/ Here we aimed to determine the therapeutic effect of allicin on ankylosing spondylitis (AS) and explore the mechanism(s) of action. AS mouse model was constructed by transferring the HLA-B2704 gene into Kunming mice and verified by RT-PCR and CT imaging. Verified AS mice were randomly divided into model group () and allicin-treated groups (50, 100, and 200 mg/kg, resp., , p.o., for 2 months). Wild type mice were used as control (). The levels of AS-related inflammatory factors were measured by ELISA. mRNA and protein expressions of HLA-B27 were checked by RT-PCR and western blotting. As the results, the mouse model of AS was successfully established, and high-dose allicin could markedly alleviate spine inflammatory injury possibly via reducing the secretion of the inflammatory factors (IL-6, IL-8, and TNF-α) sharply in AS mice. Moreover, allicin significantly inhibited HLA-B27 protein translation but failed to suppress HLA-B27 gene transcription in AS mice, indicating a posttranscriptional mechanism of this modulation. In conclusion, allicin has potential to be used for AS treatment as an anti-inflammatory nutraceutical. Xin Gu, Haishan Wu, and Peiliang Fu Copyright © 2013 Xin Gu et al. All rights reserved. Thermal and Chemical Stability of Two Homologous POZ/BTB Domains of KCTD Proteins Characterized by a Different Oligomeric Organization Wed, 06 Nov 2013 13:39:22 +0000 http://www.hindawi.com/journals/bmri/2013/162674/ POZ/BTB domains are widespread modules detected in a variety of different biological contexts. Here, we report a biophysical characterization of the POZ/BTB of KCTD6, a protein that is involved in the turnover of the muscle small ankyrin-1 isoform 5 and, in combination with KCTD11, in the ubiquitination and degradation of HDAC1. The analyses show that the domain is a tetramer made up by subunits with the expected α/ structure. A detailed investigation of its stability, carried out in comparison with the homologous pentameric POZ/BTB domain isolated from KCTD5, highlights a number of interesting features, which are shared by the two domains despite their different organization. Their thermal/chemical denaturation curves are characterized by a single and sharp inflection point, suggesting that the denaturation of the two domains is a cooperative two-state process. Furthermore, both domains present a significant content of secondary structure in their denatured state and a reversible denaturation process. We suggest that the ability of these domains to fold and unfold reversibly, a property that is somewhat unexpected for these oligomeric assemblies, may have important implications for their biological function. Indeed, these properties likely favor the formation of heteromeric associations that may be essential for the intricate regulation of the processes in which these proteins are involved. Luciano Pirone, Carla Esposito, Stefania Correale, Giuseppe Graziano, Sonia Di Gaetano, Luigi Vitagliano, and Emilia Pedone Copyright © 2013 Luciano Pirone et al. All rights reserved. Exploring Different Virtual Screening Strategies for Acetylcholinesterase Inhibitors Mon, 04 Nov 2013 10:16:08 +0000 http://www.hindawi.com/journals/bmri/2013/236850/ The virtual screening problems associated with acetylcholinesterase (AChE) inhibitors were explored using multiple shape, and structure-based modeling strategies. The employed strategies include molecular docking, similarity search, and pharmacophore modeling. A subset from directory of useful decoys (DUD) related to AChE inhibitors was considered, which consists of 105 known inhibitors and 3732 decoys. Statistical quality of the models was evaluated by enrichment factor (EF) metrics and receiver operating curve (ROC) analysis. The results revealed that electrostatic similarity search protocol using EON (ET_combo) outperformed all other protocols with outstanding enrichment of 95% in top 1% and 2% of the dataset with an AUC of 0.958. Satisfactory performance was also observed for shape-based similarity search protocol using ROCS and PHASE. In contrast, the molecular docking protocol performed poorly with enrichment factors 30% in all cases. The shape- and electrostatic-based similarity search protocol emerged as a plausible solution for virtual screening of AChE inhibitors. Nibha Mishra and Arijit Basu Copyright © 2013 Nibha Mishra and Arijit Basu. All rights reserved. The Role of Red Blood Cells in Enhancing or Preventing HIV Infection and Other Diseases Thu, 10 Oct 2013 18:14:19 +0000 http://www.hindawi.com/journals/bmri/2013/758682/ Aim. To highlight the apparently neglected role of erythrocyte antigens in the epidemiology of infectious diseases, especially HIV, with the prime objective of stimulating research in this area. Method. A literature search was performed on the PubMed for relevant papers from 1984 to 2013, the era covering active HIV research. This was achieved by using the phrases “erythrocyte blood groups HIV” (81 papers) or “red cell antigen, blood groups, and HIV” (60 papers). A manual Google Scholar search was done and supplemented by original papers referenced by various authors. However, the review was limited by the relative scarcity of papers on the subject, and only papers written in English were reviewed during the period October 2012 to September 2013. Results. Many communicable and noncommunicable diseases are associated with specific blood groups. Examples of these diseases are discussed in detail. HIV has been shown to bind to erythrocytes, and candidate erythrocyte-binding molecules and mechanisms are also discussed. Moreover, erythrocyte-HIV binding is associated with increased viral infectivity, thus, underscoring the need to study this phenomenon and its implications for HIV epidemiology. Conclusion. Erythrocyte antigens may be important in the pathogenesis and epidemiology of many diseases, including HIV. Modisa S. Motswaledi, Ishmael Kasvosve, and Oluwafemi O. Oguntibeju Copyright © 2013 Modisa S. Motswaledi et al. All rights reserved. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity Thu, 10 Oct 2013 18:13:27 +0000 http://www.hindawi.com/journals/bmri/2013/541947/ Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides’ inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (%) ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 ( μg/mL) from the 5–10 kDa fraction and F1 ( μg/mL) from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. Maira R. Segura-Campos, Fanny Peralta-González, Arturo Castellanos-Ruelas, Luis A. Chel-Guerrero, and David A. Betancur-Ancona Copyright © 2013 Maira R. Segura-Campos et al. All rights reserved. Fullerenols as a New Therapeutic Approach in Nanomedicine Mon, 07 Oct 2013 17:29:13 +0000 http://www.hindawi.com/journals/bmri/2013/751913/ Recently, much attention has been paid to the bioactive properties of water-soluble fullerene derivatives: fullerenols, with emphasis on their pro- and antioxidative properties. Due to their hydrophilic properties and the ability to scavenge free radicals, fullerenols may, in the future, provide a serious alternative to the currently used pharmacological methods in chemotherapy, treatment of neurodegenerative diseases, and radiobiology. Some of the most widely used drugs in chemotherapy are anthracycline antibiotics. Anthracycline therapy, in spite of its effective antitumor activity, induces systemic oxidative stress, which interferes with the effectiveness of the treatment and results in serious side effects. Fullerenols may counteract the harmful effects of anthracyclines by scavenging free radicals and thereby improve the effects of chemotherapy. Additionally, due to the hollow spherical shape, fullerenols may be used as drug carriers. Moreover, because of the existence of the currently ineffective ways for neurodegenerative diseases treatment, alternative compounds, which could prevent the negative effects of oxidative stress in the brain, are still sought. In the search of alternative methods of treatment and diagnosis, today’s science is increasingly reaching for tools in the field of nanomedicine, for example, fullerenes and their water-soluble derivatives, which is addressed in the present paper. Jacek Grebowski, Paulina Kazmierska, and Anita Krokosz Copyright © 2013 Jacek Grebowski et al. All rights reserved. Frataxin mRNA Isoforms in FRDA Patients and Normal Subjects: Effect of Tocotrienol Supplementation Mon, 23 Sep 2013 08:50:23 +0000 http://www.hindawi.com/journals/bmri/2013/276808/ Friedreich’s ataxia (FRDA) is caused by deficient expression of the mitochondrial protein frataxin involved in the formation of iron-sulphur complexes and by consequent oxidative stress. We analysed low-dose tocotrienol supplementation effects on the expression of the three splice variant isoforms (FXN-1, FXN-2, and FXN-3) in mononuclear blood cells of FRDA patients and healthy subjects. In FRDA patients, tocotrienol leads to a specific and significant increase of FXN-3 expression while not affecting FXN-1 and FXN-2 expression. Since no structural and functional details were available for FNX-2 and FXN-3, 3D models were built. FXN-1, the canonical isoform, was then docked on the human iron-sulphur complex, and functional interactions were computed; when FXN-1 was replaced by FXN-2 or FNX-3, we found that the interactions were maintained, thus suggesting a possible biological role for both isoforms in human cells. Finally, in order to evaluate whether tocotrienol enhancement of FXN-3 was mediated by an increase in peroxisome proliferator-activated receptor-γ (PPARG), PPARG expression was evaluated. At a low dose of tocotrienol, the increase of FXN-3 expression appeared to be independent of PPARG expression. Our data show that it is possible to modulate the mRNA expression of the minor frataxin isoforms and that they may have a functional role. Provvidenza Maria Abruzzo, Marina Marini, Alessandra Bolotta, Gemma Malisardi, Stefano Manfredini, Alessandro Ghezzo, Antonella Pini, Gianluca Tasco, and Rita Casadio Copyright © 2013 Provvidenza Maria Abruzzo et al. All rights reserved. The Pyridoxal 5′-Phosphate (PLP)-Dependent Enzyme Serine Palmitoyltransferase (SPT): Effects of the Small Subunits and Insights from Bacterial Mimics of Human hLCB2a HSAN1 Mutations Mon, 23 Sep 2013 08:05:23 +0000 http://www.hindawi.com/journals/bmri/2013/194371/ The pyridoxal 5′-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b), and mutations in both hLCB1 (e.g., C133W and C133Y) and hLCB2a (e.g., V359M, G382V, and I504F) have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1), an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT) provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F), and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form. Ashley E. Beattie, Sita D. Gupta, Lenka Frankova, Agne Kazlauskaite, Jeffrey M. Harmon, Teresa M. Dunn, and Dominic J. Campopiano Copyright © 2013 Ashley E. Beattie et al. All rights reserved. Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower Sun, 22 Sep 2013 15:05:03 +0000 http://www.hindawi.com/journals/bmri/2013/367819/ Brassica species are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively. Fouad A. Ahmed and Rehab F. M. Ali Copyright © 2013 Fouad A. Ahmed and Rehab F. M. Ali. All rights reserved. Evaluation of Fatty Acid and Amino Acid Compositions in Okra (Abelmoschus esculentus) Grown in Different Geographical Locations Sun, 22 Sep 2013 10:37:30 +0000 http://www.hindawi.com/journals/bmri/2013/574283/ Okra has different uses as a food and a remedy in traditional medicine. Since it produces many seeds, distribution of the plant is also quite easy. Although seed oil yield is low (4.7%), since the linoleic acid composition of the seed oil is quiet high (67.5%), it can still be used as a source of (UNSAT) unsaturated fatty acids. In this study, samples of okra grown in four different locations were analyzed to measure fatty acid and amino acid compositions. The content of the lipid extraction ranged from 4.34% to 4.52% on a dry weight basis. Quantitatively, the main okra fatty acids were palmitic acid (29.18–43.26%), linoleic acid (32.22–43.07%), linolenic acid (6.79–12.34%), stearic acid (6.36–7.73%), oleic acid (4.31–6.98%), arachidic acid (ND–3.48%), margaric acid (1.44–2.16%), pentadecylic acid (0.63–0.92%), and myristic acid (0.21–0.49%). Aspartic acid, proline, and glutamic acids were the main amino acids in okra pods, while cysteine and tyrosine were the minor amino acids. Statistical methods revealed how the fatty acid and amino acid contents in okra may be affected by the sampling location. Rokayya Sami, Jiang Lianzhou, Li Yang, Ying Ma, and Jing Jing Copyright © 2013 Rokayya Sami et al. All rights reserved. Novel Spectrophotometric Method for the Quantitation of Urinary Xanthurenic Acid and Its Application in Identifying Individuals with Hyperhomocysteinemia Associated with Vitamin Deficiency Mon, 16 Sep 2013 15:01:02 +0000 http://www.hindawi.com/journals/bmri/2013/678476/ A novel spectrophotometric method for the quantification of urinary xanthurenic acid (XA) is described. The direct acid ferric reduction (DAFR) procedure was used to quantify XA after it was purified by a solid-phase extraction column. The linearity of proposed method extends from 2.5 to 100.0 mg/L. The method is precise, yielding day-to-day CVs for two pooled controls of 3.5% and 4.6%, respectively. Correlation studies with an established HPLC method and a fluorometric procedure showed correlation coefficients of 0.98 and 0.98, respectively. Interference from various urinary metabolites was insignificant. In a small-scale screening of elderly conducted at Penghu county in Taiwan (), we were able to identify a group of twenty individuals having hyperhomocysteinemia (>15 μmole/L). Three of them were found to be positive for XA as analyzed by the proposed method, which correlated excellently with the results of the activation coefficient method for RBC’s AST/B6 functional test. These data confirm the usefulness of the proposed method for identifying urinary XA as an indicator of vitamin B6 deficiency-associated hyperhomocysteinemic condition. Chi-Fen Chen, Tsan-Zon Liu, Wu-Hsiang Lan, Li-An Wu, Chin-Hung Tsai, Jeng-Fong Chiou, and Li-Yu Tsai Copyright © 2013 Chi-Fen Chen et al. All rights reserved. -3 PUFAs in the Prevention and Cure of Inflammatory, Degenerative, and Neoplastic Diseases Mon, 16 Sep 2013 09:02:24 +0000 http://www.hindawi.com/journals/bmri/2013/905986/ Achille Cittadini, Gabriella Calviello, Hui-Min Su, and Karsten Weylandt Copyright © 2013 Achille Cittadini et al. All rights reserved. 7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1 Sat, 14 Sep 2013 14:03:32 +0000 http://www.hindawi.com/journals/bmri/2013/863720/ The modified guanine base 8-oxoguanine (8-oxoG) is abundantly produced by oxidative stress, can contribute to carcinogenesis, and can be removed from DNA by 8-oxoguanine DNA glycosylase-1 (OGG1), which acts as an 8-oxoG glycosylase and endonuclease. This study investigated the mechanism by which 7,8-dihydroxyflavone (DHF) inhibits oxidative stress-induced 8-oxoG formation in hamster lung fibroblasts (V79-4). DHF significantly reduced the amount of 8-oxoG induced by hydrogen peroxide (H2O2) and elevated the levels of OGG1 mRNA and protein. DHF increased the binding of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response element sequences in the upstream promoter region of OGG1. Moreover, DHF increased the nuclear levels of Nrf2, small Maf proteins, and the Nrf2/small Maf complex, all of which are decreased by H2O2 treatment. Likewise, the level of phosphorylated Akt, which activates Nrf2, was decreased by H2O2 treatment but restored by DHF treatment. The levels of OGG1 and nuclear translocation of Nrf2 protein were decreased upon treatment with PI3K inhibitor or Akt inhibitor, and DHF treatment did not restore OGG1 and nuclear Nrf2 levels in these inhibitor-treated cells. Furthermore, PI3K and Akt inhibitors abolished the protective effects of DHF in cells undergoing oxidative stress. These data indicate that DHF induces OGG1 expression via the PI3K-Akt pathway and protects cells against oxidative DNA base damage by activating DNA repair systems. Ki Cheon Kim, In Kyung Lee, Kyoung Ah Kang, Ji Won Cha, Suk Ju Cho, Soo Young Na, Sungwook Chae, Hye Sun Kim, Suhkmann Kim, and Jin Won Hyun Copyright © 2013 Ki Cheon Kim et al. All rights reserved. Characterization of C-S Lyase from C. diphtheriae: A Possible Target for New Antimicrobial Drugs Wed, 11 Sep 2013 11:03:16 +0000 http://www.hindawi.com/journals/bmri/2013/701536/ The emergence of antibiotic resistance in microbial pathogens requires the identification of new antibacterial drugs. The biosynthesis of methionine is an attractive target because of its central importance in cellular metabolism. Moreover, most of the steps in methionine biosynthesis pathway are absent in mammals, lowering the probability of unwanted side effects. Herein, detailed biochemical characterization of one enzyme required for methionine biosynthesis, a pyridoxal-5′-phosphate (PLP-) dependent C-S lyase from Corynebacterium diphtheriae, a pathogenic bacterium that causes diphtheria, has been performed. We overexpressed the protein in E. coli and analyzed substrate specificity, pH dependence of steady state kinetic parameters, and ligand-induced spectral transitions of the protein. Structural comparison of the enzyme with cystalysin from Treponema denticola indicates a similarity in overall folding. We used site-directed mutagenesis to highlight the importance of active site residues Tyr55, Tyr114, and Arg351, analyzing the effects of amino acid replacement on catalytic properties of enzyme. Better understanding of the active site of C. diphtheriae C-S lyase and the determinants of substrate and reaction specificity from this work will facilitate the design of novel inhibitors as antibacterial therapeutics. Alessandra Astegno, Alejandro Giorgetti, Alessandra Allegrini, Barbara Cellini, and Paola Dominici Copyright © 2013 Alessandra Astegno et al. All rights reserved. Acetylsalicylic Acid Reduces the Severity of Dextran Sodium Sulfate-Induced Colitis and Increases the Formation of Anti-Inflammatory Lipid Mediators Sun, 08 Sep 2013 14:29:40 +0000 http://www.hindawi.com/journals/bmri/2013/748160/ The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation. Thomas Köhnke, Beate Gomolka, Süleyman Bilal, Xiangzhi Zhou, Yanping Sun, Michael Rothe, Daniel C. Baumgart, and Karsten H. Weylandt Copyright © 2013 Thomas Köhnke et al. All rights reserved. Responses of Growth Performance and Proinflammatory Cytokines Expression to Fish Oil Supplementation in Lactation Sows’ and/or Weaned Piglets’ Diets Sun, 01 Sep 2013 11:35:01 +0000 http://www.hindawi.com/journals/bmri/2013/905918/ The study was conducted to investigate whether dietary fish oil could influence growth of piglets via regulating the expression of proinflammatory cytokines. A split-plot experimental design was used with sow diet effect in the main plots and differing piglet diet effect in the subplot. The results showed that suckling piglets from fish oil fed dams grew rapidly () than control. It was also observed that these piglets had higher ADG, feed intake, and final body weight () during postweaning than those piglets from lard fed dams. Furthermore, there was a significant decrease () in the expression of interleukin 6 and tumor necrosis factor-α in longissimus dorsi muscle. In contrast, there was a tendency () towards lower ADG and higher feed : gain in weaned piglets receiving fish oil compared with those receiving lard. Meanwhile, splenic proinflammatory cytokines expression was increased () in piglets receiving fish oil during postweaning period. The results suggested that 7% fish oil addition to sows' diets alleviated inflammatory response via decreasing the proinflammatory cytokines expression in skeletal muscle and accelerated piglet growth. However, 7% fish oil addition to weaned piglets' diets might decrease piglet growth via increasing splenic proinflammatory cytokines expression. Jie Luo, Feiruo Huang, Chenglin Xiao, Zhengfeng Fang, Jian Peng, and Siwen Jiang Copyright © 2013 Jie Luo et al. All rights reserved. Polyphenolic Contents and Antioxidant Properties of Different Grape (V. vinifera, V. labrusca, and V. hybrid) Cultivars Wed, 21 Aug 2013 10:04:09 +0000 http://www.hindawi.com/journals/bmri/2013/718065/ The polyphenolic contents and the antioxidant activity of the skins and pulps of different grape cultivars were estimated using HPLC and DPPH antioxidant assay, respectively. The phenolics and flavonoids identified were quercetin, kaempferol, caffeic acid, p-coumaric acid, cinnamic acid, and (−)-epicatechin. The total phenolic contents were found to be the highest in the grape skin of Flouxa (>400 mg/100 g), followed by Campbell Early and Tamnara (>300 mg/100 g), and then by Red Globe and Ruby Seedless (>250 mg/100 g), and the total phenolic content was the lowest in Italia and Delaware (<60 mg/100 g). The antioxidant activities of the grape extracts varied from 12.5% (Ruby Seedless) to 60.2% (Hongiseul) for skins, whereas the antioxidant activities of the grape extracts varied from 35.4% (Campbell Early) to 84.5% (Hongiseul) for pulps. The grape pulps have stronger antioxidant activities than those of the grape skins. Our results suggest that the phenolic and flavonoid contents in extracts of grape skins and pulps showed statistically significant correlations with the free radical scavenging activity. Shivraj Hariram Nile, S. H. Kim, Eun Young Ko, and Se Won Park Copyright © 2013 Shivraj Hariram Nile et al. All rights reserved. An Active C-Terminally Truncated Form of Ca2+/Calmodulin-Dependent Protein Kinase Phosphatase-N (CaMKP-N/PPM1E) Wed, 07 Aug 2013 13:26:54 +0000 http://www.hindawi.com/journals/bmri/2013/134813/ Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and its nuclear homolog CaMKP-N (PPM1E) are Ser/Thr protein phosphatases that belong to the PPM family. CaMKP-N is expressed in the brain and undergoes proteolytic processing to yield a C-terminally truncated form. The physiological significance of this processing, however, is not fully understood. Using a wheat-embryo cell-free protein expression system, we prepared human CaMKP-N (hCaMKP-N(WT)) and the truncated form, hCaMKP-N(1–559), to compare their enzymatic properties using a phosphopeptide substrate. The hCaMKP-N(1–559) exhibited a much higher value than the hCaMKP-N(WT) did, suggesting that the processing may be a regulatory mechanism to generate a more active species. The active form, hCaMKP-N(1–559), showed Mn2+ or Mg2+-dependent phosphatase activity with a strong preference for phospho-Thr residues and was severely inhibited by NaF, but not by okadaic acid, calyculin A, or 1-amino-8-naphthol-2,4-disulfonic acid, a specific inhibitor of CaMKP. It could bind to postsynaptic density and dephosphorylate the autophosphorylated Ca2+/calmodulin-dependent protein kinase II. Furthermore, it was inactivated by H2O2 treatment, and the inactivation was completely reversed by treatment with DTT, implying that this process is reversibly regulated by oxidation/reduction. The truncated CaMKP-N may play an important physiological role in neuronal cells. Atsuhiko Ishida, Kumiko Tsumura, Megu Oue, Yasuhiro Takenaka, Yasushi Shigeri, Naoki Goshima, Yasuhiro Ishihara, Tetsuo Hirano, Hiromi Baba, Noriyuki Sueyoshi, Isamu Kameshita, and Takeshi Yamazaki Copyright © 2013 Atsuhiko Ishida et al. All rights reserved. Metabolomics in Plants and Humans: Applications in the Prevention and Diagnosis of Diseases Tue, 06 Aug 2013 10:55:50 +0000 http://www.hindawi.com/journals/bmri/2013/792527/ In the recent years, there has been an increase in the number of metabolomic approaches used, in parallel with proteomic and functional genomic studies. The wide variety of chemical types of metabolites available has also accelerated the use of different techniques in the investigation of the metabolome. At present, metabolomics is applied to investigate several human diseases, to improve their diagnosis and prevention, and to design better therapeutic strategies. In addition, metabolomic studies are also being carried out in areas such as toxicology and pharmacology, crop breeding, and plant biotechnology. In this review, we emphasize the use and application of metabolomics in human diseases and plant research to improve human health. Diego F. Gomez-Casati, Maria I. Zanor, and María V. Busi Copyright © 2013 Diego F. Gomez-Casati et al. All rights reserved. Cloning and Characterization of EF-Tu and EF-Ts from Pseudomonas aeruginosa Mon, 05 Aug 2013 09:01:17 +0000 http://www.hindawi.com/journals/bmri/2013/585748/ We have cloned genes encoding elongation factors EF-Tu and EF-Ts from Pseudomonas aeruginosa and expressed and purified the proteins to greater than 95% homogeneity. Sequence analysis indicated that P. aeruginosa EF-Tu and EF-Ts are 84% and 55% identical to E. coli counterparts, respectively. P. aeruginosa EF-Tu was active when assayed in GDP exchange assays. Kinetic parameters for the interaction of EF-Tu with GDP in the absence of EF-Ts were observed to be = 33 μM, = 0.003 s−1, and the specificity constant was  s−1 μM−1. In the presence of EF-Ts, these values were shifted to = 2 μM, = 0.005 s−1, and the specificity constant was  s−1 μM−1. The equilibrium dissociation constants governing the binding of EF-Tu to GDP () were 30–75 nM and to GTP () were 125–200 nM. EF-Ts stimulated the exchange of GDP by EF-Tu 10-fold. P. aeruginosa EF-Tu was active in forming a ternary complex with GTP and aminoacylated tRNA and was functional in poly(U)-dependent binding of Phe-tRNAPhe at the A-site of P. aeruginosa ribosomes. P. aeruginosa EF-Tu was active in poly(U)-programmed polyphenylalanine protein synthesis system composed of all P. aeruginosa components. Stephanie O. Palmer, Edna Y. Rangel, Alberto E. Montalvo, Alexis T. Tran, Kate C. Ferguson, and James M. Bullard Copyright © 2013 Stephanie O. Palmer et al. All rights reserved. Preparation, Physicochemical Characterization, and Cell Viability Evaluation of Long-Circulating and pH-Sensitive Liposomes Containing Ursolic Acid Sun, 04 Aug 2013 10:52:09 +0000 http://www.hindawi.com/journals/bmri/2013/467147/ Cancer is one of the leading causes of death worldwide. Although several drugs are used clinically, some tumors either do not respond or are resistant to the existing pharmacotherapy, thus justifying the search for new drugs. Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low solubility in aqueous medium, which presents a barrier to its biological applications. In this context, the use of liposomes presents a promising strategy to deliver UA and allow for its intravenous administration. In this work, long-circulating and pH-sensitive liposomes containing UA (SpHL-UA) were developed, and their chemical and physicochemical properties were evaluated. SpHL-UA presented adequate properties, including a mean diameter of 191.1 ± 6.4 nm, a zeta potential of 1.2 ± 1.4 mV, and a UA entrapment of 0.77 ± 0.01 mg/mL. Moreover, this formulation showed a good stability after having been stored for 2 months at 4°C. The viability studies on breast (MDA-MB-231) and prostate (LNCaP) cancer cell lines demonstrated that SpHL-UA treatment significantly inhibited cancer cell proliferation. Therefore, the results of the present work suggest the applicability of SpHL-UA as a new and promising anticancer formulation. Sávia Caldeira de Araújo Lopes, Marcus Vinícius Melo Novais, Cláudia Salviano Teixeira, Kinulpe Honorato-Sampaio, Márcio Tadeu Pereira, Lucas Antônio Miranda Ferreira, Fernão Castro Braga, and Mônica Cristina Oliveira Copyright © 2013 Sávia Caldeira de Araújo Lopes et al. All rights reserved. Efficiency of Barley Bran and Oat Bran in Ameliorating Blood Lipid Profile and the Adverse Histological Changes in Hypercholesterolemic Male Rats Thu, 01 Aug 2013 12:24:25 +0000 http://www.hindawi.com/journals/bmri/2013/263594/ The efficiency of oat bran and barley bran in lowering the induced hyperlipidemia and hypercholesterolemia in blood of male Albino rats (Rattus rattus) was studied. Twenty rats were divided into four groups each consisted of five rats and fed the specified test diets for eight weeks. The first group (G1) is the negative group which was fed basal diet, the second group (G2) was fed 1.0% cholesterol, was the third group (G3) fed 1.0% cholesterol and 10% oats bran, and the fourth group (G4) was fed 1.0% cholesterol and 10% barley bran. Feeding rats on 1% cholesterol significantly increased serum total cholesterol, low density lipoprotein, and very low density lipoprotein and triglyceride and decreased serum high density lipoprotein. Furthermore, enzyme activity of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase was increased, and lipid peroxide was increased, whereas catalase and glutathione-S-transferase were decreased. Kidney functions parameters in the cholesterol supplemented group were elevated compared with the negative control. In addition, histological alteration in kidney, liver, heart, and testes was observed, compared with the negative control. Hypercholesterolemic rats supplemented with oat bran and barley bran showed significant decrease in lipid parameters, significant increase in high density lipoprotein-cholesterol, improved antioxidant enzyme, and improved histopathology of kidney, liver, heart, and testes. In conclusion, both oat bran and barley bran had protective effects against induced hyperlipidemia and improved histological alterations. Oat bran appeared more efficient than barley bran in lowering the lipid profile levels in hypercholesterolemic rats. Haddad A. El Rabey, Madeha N. Al-Seeni, and Hanan M. Amer Copyright © 2013 Haddad A. El Rabey et al. All rights reserved. Asymmetry of the Active Site Loop Conformation between Subunits of Glutamate-1-semialdehyde Aminomutase in Solution Wed, 31 Jul 2013 12:55:44 +0000 http://www.hindawi.com/journals/bmri/2013/353270/ Glutamate-1-semialdehyde aminomutase (GSAM) is a dimeric, pyridoxal 5′-phosphate (PLP)- dependent enzyme catalysing in plants and some bacteria the isomerization of L-glutamate-1-semialdehyde to 5-aminolevulinate, a common precursor of chlorophyll, haem, coenzyme B12, and other tetrapyrrolic compounds. During the catalytic cycle, the coenzyme undergoes conversion from pyridoxamine 5′-phosphate (PMP) to PLP. The entrance of the catalytic site is protected by a loop that is believed to switch from an open to a closed conformation during catalysis. Crystallographic studies indicated that the structure of the mobile loop is related to the form of the cofactor bound to the active site, allowing for asymmetry within the dimer. Since no information on structural and functional asymmetry of the enzyme in solution is available in the literature, we investigated the active site accessibility by determining the cofactor fluorescence quenching of PMP- and PLP-GSAM forms. PLP-GSAM is partially quenched by potassium iodide, suggesting that at least one catalytic site is accessible to the anionic quencher and therefore confirming the asymmetry observed in the crystal structure. Iodide induces release of the cofactor from PMP-GSAM, apparently from only one catalytic site, therefore suggesting an asymmetry also in this form of the enzyme in solution, in contrast with the crystallographic data. Barbara Campanini, Stefano Bettati, Martino Luigi di Salvo, Andrea Mozzarelli, and Roberto Contestabile Copyright © 2013 Barbara Campanini et al. All rights reserved. Nutritional Properties of Dietary Omega-3-Enriched Phospholipids Wed, 31 Jul 2013 08:58:22 +0000 http://www.hindawi.com/journals/bmri/2013/965417/ Dietary fatty acids regulate several physiological functions. However, to exert their properties, they have to be present in the diet in an optimal balance. Particular attention has been focused on tissue highly polyunsaturated fatty acids (HPUFAs) n-6/n-3 ratio, influenced by the type and the esterified form of dietary fatty acids. Dietary EPA and DHA when esterified to phospholipids (PLs) are more efficiently incorporated into tissue PLs and seem to possess peculiar properties through specific mechanism(s) of action, such as the capacity to affect endocannabinoid biosynthesis at much lower doses than EPA and DHA in triglyceride form, probably because of the above mentioned higher incorporation into tissue PLs. Downregulation of the endocannabinoid system seems to mediate the positive effects exerted by omega-3-enriched PLs on several parameters of metabolic syndrome. PLs are one of the major dietary forms of EPA and DHA we are exposed to with the everyday diet; therefore, it is not surprising that it guarantees an effective EPA and DHA nutritional activity. Future studies should address whether EPA and DHA in PL form are also more effective than other formulations in ameliorating other pathological conditions where n-3 HPUFAs seem to exert beneficial activities such as cancer and psychiatric disorders. Elisabetta Murru, Sebastiano Banni, and Gianfranca Carta Copyright © 2013 Elisabetta Murru et al. All rights reserved. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells Tue, 30 Jul 2013 08:21:14 +0000 http://www.hindawi.com/journals/bmri/2013/754946/ Oxidative damage to mitochondrial DNA (mtDNA) has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS) to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP) on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control), as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy. Ghada Al-Kafaji and Jamal Golbahar Copyright © 2013 Ghada Al-Kafaji and Jamal Golbahar. All rights reserved. Spectroscopic Studies on Unfolding Processes of Apo-Neuroglobin Induced by Guanidine Hydrochloride and Urea Wed, 24 Jul 2013 11:13:53 +0000 http://www.hindawi.com/journals/bmri/2013/349542/ Neuroglobin (Ngb), a recently discovered globin, is predominantly expressed in the brain, retina, and other nerve tissues of vertebrates. The unfolding processes of apo-neuroglobin (apoNgb) induced by guanidine hydrochloride (GdnHCl) and urea were investigated by spectroscopic methods. In the unfolding processes, apoNgb's tertiary structural transition was monitored by the changes of intrinsic fluorescence emission spectra, and its secondary structural transition was measured by the changes of far-ultraviolet circular dichroism (CD) spectra. In addition, 8-anilino-1-naphthalenesulfonic acid (ANS), a hydrophobic cluster binding dye, was also used to monitor the unfolding process of apoNgb and to explore its intermediates. Results showed that GdnHCl-induced unfolding of apoNgb was via a three-state pathway, that is, Native state → Intermediate state → Unfolded state , during which the intermediate was inferred by an increase in fluorescence intensity and the change of CD value. Gibbs free energy changes are 10.2 kJ·mol−1 for the first unfolding transition and 14.0 kJ·mol−1 for the second transition. However, urea-induced unfolding of apoNgb only underwent a two-state transition: Native state → Partially unfolded state . The result showed that GdnHCl can efficiently affect the conformational states of apoNgb compared with those of urea. The work will benefit to have an understanding of the unfolding mechanism of apoNgb induced by GdnHCl and urea. Cui Zhang, Chaohui Gao, Jianshuai Mu, Zhanglei Qiu, and Lianzhi Li Copyright © 2013 Cui Zhang et al. All rights reserved. Age-Related Changes in Hepatic Activity and Expression of Detoxification Enzymes in Male Rats Mon, 22 Jul 2013 08:45:12 +0000 http://www.hindawi.com/journals/bmri/2013/408573/ Process of aging is accompanied by changes in the biotransformation of xenobiotics and impairment of normal cellular functions by free radicals. Therefore, this study was designed to determine age-related differences in the activities and/or expressions of selected drug-metabolizing and antioxidant enzymes in young and old rats. Specific activities of 8 drug-metabolizing enzymes and 4 antioxidant enzymes were assessed in hepatic subcellular fractions of 6-week-old and 21-month-old male Wistar rats. Protein expressions of carbonyl reductase 1 (CBR1) and glutathione S-transferase (GST) were determined using immunoblotting. Remarkable age-related decrease in specific activities of CYP2B, CYP3A, and UDP-glucuronosyl transferase was observed, whereas no changes in activities of CYP1A2, flavine monooxygenase, aldo-keto reductase 1C, and antioxidant enzymes with advancing age were found. On the other hand, specific activity of CBR1 and GST was 2.4 folds and 5.6 folds higher in the senescent rats compared with the young ones, respectively. Interindividual variability in CBR1 activity increased significantly with rising age. We suppose that elevated activities of GST and CBR1 may protect senescent rats against xenobiotic as well as eobiotic electrophiles and reactive carbonyls, but they may alter metabolism of drugs, which are CBR1 and especially GSTs substrates. Erika Vyskočilová, Barbora Szotáková, Lenka Skálová, Hana Bártíková, Jitka Hlaváčová, and Iva Boušová Copyright © 2013 Erika Vyskočilová et al. All rights reserved. A Comparative Study for the Evaluation of Two Doses of Ellagic Acid on Hepatic Drug Metabolizing and Antioxidant Enzymes in the Rat Thu, 18 Jul 2013 11:32:10 +0000 http://www.hindawi.com/journals/bmri/2013/358945/ The present study was designed to evaluate different doses of ellagic acid (EA) in vivo in rats for its potential to modulate hepatic phases I, II, and antioxidant enzymes. EA (10 or 30 mg/kg/day, intragastrically) was administered for 14 consecutive days, and activity, protein, and mRNA levels were determined. Although the cytochrome P450 (CYP) 2B and CYP2E enzyme activities were decreased significantly, the activities of all other enzymes were unchanged with the 10 mg/kg/day EA. In addition, western-blot and qRT-PCR results clearly corroborated the above enzyme expressions. On the other hand, while the NAD(P)H:quinone oxidoreductase 1 (NQO1), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were increased significantly, CYP1A, 2B, 2C, 2E, and 19 enzyme activities were reduced significantly with 30 mg/kg/day EA. In addition, CYP2B, 2C6, 2E1, and 19 protein and mRNA levels were substantially decreased by the 30 mg/kg/day dose of EA, but the CYP1A protein, and mRNA levels were not changed. CYP3A enzyme activity, protein and mRNA levels were not altered by neither 10 nor 30 mg/kg/day ellagic acid. These results indicate that EA exerts a dose-dependent impact on the metabolism of chemical carcinogens and drugs by affecting the enzymes involved in xenobiotics activation/detoxification and antioxidant pathways. Gurbet Celik, Aslı Semiz, Serdar Karakurt, Sevki Arslan, Orhan Adali, and Alaattin Sen Copyright © 2013 Gurbet Celik et al. All rights reserved. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I Tue, 16 Jul 2013 12:47:03 +0000 http://www.hindawi.com/journals/bmri/2013/687658/ Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. Angel L. Pey, Armando Albert, and Eduardo Salido Copyright © 2013 Angel L. Pey et al. All rights reserved. The Glycosylation of AGP and Its Associations with the Binding to Methadone Mon, 15 Jul 2013 13:55:50 +0000 http://www.hindawi.com/journals/bmri/2013/108902/ Methadone remains the most common form of pharmacological therapy for opioid dependence; however, there is a lack of explanation for the reports of its relatively low success rate in achieving complete abstinence. One hypothesis is that in vivo binding of methadone to the plasma glycoprotein alpha-1-acid glycoprotein (AGP), to a degree dependent on the molecular structure, may render the drug inactive. This study sought to determine whether alterations present in the glycosylation pattern of AGP in patients undergoing various stages of methadone therapy (titration < two weeks, harm reduction < one year, long-term > one and a half years) could affect the affinity of the glycoprotein to bind methadone. The composition of AGP glycosylation was determined using high pH anion exchange chromatography (HPAEC) and intrinsic fluorescence analysed to determine the extent of binding to methadone. The monosaccharides galactose and N-acetyl-glucosamine were elevated in all methadone treatment groups indicating alterations in AGP glycosylation. AGP from all patients receiving methadone therapy exhibited a greater degree of binding than the normal population. This suggests that analysing the glycosylation of AGP in patients receiving methadone may aid in determining whether the therapy is likely to be effective. Jennifer L. Behan, Yvonne E. Cruickshank, Gerri Matthews-Smith, Malcolm Bruce, and Kevin D. Smith Copyright © 2013 Jennifer L. Behan et al. All rights reserved. Structure-Based Mechanism for Early PLP-Mediated Steps of Rabbit Cytosolic Serine Hydroxymethyltransferase Reaction Mon, 15 Jul 2013 11:30:51 +0000 http://www.hindawi.com/journals/bmri/2013/458571/ Serine hydroxymethyltransferase catalyzes the reversible interconversion of L-serine and glycine with transfer of one-carbon groups to and from tetrahydrofolate. Active site residue Thr254 is known to be involved in the transaldimination reaction, a crucial step in the catalytic mechanism of all pyridoxal 5′-phosphate- (PLP-) dependent enzymes, which determines binding of substrates and release of products. In order to better understand the role of Thr254, we have expressed, characterized, and determined the crystal structures of rabbit cytosolic serine hydroxymethyltransferase T254A and T254C mutant forms, in the absence and presence of substrates. These mutants accumulate a kinetically stable gem-diamine intermediate, and their crystal structures show differences in the active site with respect to wild type. The kinetic and crystallographic data acquired with mutant enzymes permit us to infer that conversion of gem-diamine to external aldimine is significantly slowed because intermediates are trapped into an anomalous position by a misorientation of the PLP ring, and a new energy barrier hampers the transaldimination reaction. This barrier likely arises from the loss of the stabilizing hydrogen bond between the hydroxymethyl group of Thr254 and the ε-amino group of active site Lys257, which stabilizes the external aldimine intermediate in wild type SHMTs. Martino L. Di Salvo, J. Neel Scarsdale, Galina Kazanina, Roberto Contestabile, Verne Schirch, and H. Tonie Wright Copyright © 2013 Martino L. Di Salvo et al. All rights reserved. Enhanced EGFP Fluorescence Emission in Presence of PEG Aqueous Solutions and -- Copolymer Vesicles Wed, 10 Jul 2013 08:48:45 +0000 http://www.hindawi.com/journals/bmri/2013/329087/ An EGFP construct interacting with the PIB1000-PEG6000-PIB1000 vesicles surface reported a ~2-fold fluorescence emission enhancement. Because of the constructs nature with the amphiphilic peptide inserted into the PIB core, EGFP is expected to experience a “pure” PEG environment. To unravel this phenomenon PEG/water solutions at different molecular weights and concentrations were used. Already at ~1 : 10 protein/PEG molar ratio the increase in fluorescence emission is observed reaching a plateau correlating with the PEG molecular weight. Parallel experiments in presence of glycerol aqueous solutions did show a slight fluorescence enhancement however starting at much higher concentrations. Molecular dynamics simulations of EGFP in neat water, glycerol, and PEG aqueous solutions were performed showing that PEG molecules tend to “wrap” the protein creating a microenvironment where the local PEG concentration is higher compared to its bulk concentration. Because the fluorescent emission can be perturbed by the refractive index surrounding the protein, the clustering of PEG molecules induces an enhanced fluorescence emission already at extremely low concentrations. These findings can be important when related to the use of EGFP as reported in molecular biology experiments. Noor Muhammad, Nadezda Kryuchkova, Tamara Dworeck, Francisco Rodríguez-Ropero, and Marco Fioroni Copyright © 2013 Noor Muhammad et al. All rights reserved. Clinical Application Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 as Indicators of Inflammation Persistence and Acute Kidney Injury in Children with Urinary Tract Infection Tue, 09 Jul 2013 13:38:19 +0000 http://www.hindawi.com/journals/bmri/2013/947157/ Background. The aim of this study was to examine the novel renal biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) to assist pediatricians in the assessment of longer duration of inflammation and acute kidney injury (AKI) development during urinary tract infection (UTI). Methods. The patients enrolled in the study comprised 50 children (mean age was 6 months) with UTI. NGAL in serum and urine (sNGAL and uNGAL, resp.) and KIM-1 in urine were measured by enzyme-linked immunosorbent assays. Results. uNGAL levels in subjects with longer duration of inflammation were higher (115.37 ng/mL) than uNGAL levels in subjects with shorter duration of inflammation (67.87 ng/mL, ). Difference in sNGAL and KIM-1 levels was not significant ( and , resp.). Significant difference was seen in KIM-1 excretion among groups with and without AKI (). KIM-1 was not able to discriminate between subjects with and without AKI (area under the curves (AUC) = 0.620, ). Conclusions. uNGAL cannot be used for screening of the duration of inflammation during UTI. Accuracy of KIM-1 in screening of AKI development in children with UTI is low. We suggest larger studies to check the negative predictive value of KIM-1 for the development of AKI. Stanislava Petrovic, Natasa Bogavac-Stanojevic, Amira Peco-Antic, Ivana Ivanisevic, Jelena Kotur-Stevuljevic, Dusan Paripovic, Miron Sopic, and Zorana Jelic-Ivanovic Copyright © 2013 Stanislava Petrovic et al. All rights reserved. The Role of Magnetic Nanoparticles in the Localization and Treatment of Breast Cancer Tue, 09 Jul 2013 10:53:03 +0000 http://www.hindawi.com/journals/bmri/2013/281230/ The role of magnetic nanoparticles (MNPs) in medical applications is rapidly developing. Advances in nanotechnology are bringing us closer to the development of dual and multifunctional nanoparticles that are challenging the traditional distinction between diagnostic and treatment agents. The current use of MNPs in breast cancer falls into four main groups: (1) imaging of primary and metastatic disease, (2) sentinel lymph node biopsy (SLNB), (3) drug delivery systems, and (4) magnetic hyperthermia. The current evidence for the use of MNPs in these fields is mounting, and potential cutting-edge clinical applications, particularly with relevance to the fields of breast oncological surgery, are emerging. M. Ahmed and M. Douek Copyright © 2013 M. Ahmed and M. Douek. All rights reserved. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells Mon, 08 Jul 2013 15:04:47 +0000 http://www.hindawi.com/journals/bmri/2013/535796/ Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM). The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25 μg/mL) for 24 h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH), caspase-3, reactive oxygen species (ROS) generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy. Sangiliyandi Gurunathan, Jae Woong Han, Vasuki Eppakayala, Muniyandi Jeyaraj, and Jin-Hoi Kim Copyright © 2013 Sangiliyandi Gurunathan et al. All rights reserved. Metabolomic Analysis of Differential Changes in Metabolites during ATP Oscillations in Chondrogenesis Wed, 26 Jun 2013 08:46:29 +0000 http://www.hindawi.com/journals/bmri/2013/213972/ Prechondrogenic condensation is a critical step for skeletal pattern formation. Recent studies reported that ATP oscillations play an essential role in prechondrogenic condensation. However, the molecular mechanism to underlie ATP oscillations remains poorly understood. In the present study, it was investigated how changes in metabolites are implicated in ATP oscillations during chondrogenesis by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). CE-TOF-MS detected 93 cationic and 109 anionic compounds derived from known metabolic pathways. 15 cationic and 18 anionic compounds revealed significant change between peak and trough of ATP oscillations. These results implicate that glycolysis, mitochondrial respiration and uronic acid pathway oscillate in phase with ATP oscillations, while PPRP and nucleotides synthesis pathways oscillate in antiphase with ATP oscillations. This suggests that the ATP-producing glycolysis and mitochondrial respiration oscillate in antiphase with the ATP-consuming PPRP/nucleotide synthesis pathway during chondrogenesis. Hyuck Joon Kwon and Yoshihiro Ohmiya Copyright © 2013 Hyuck Joon Kwon and Yoshihiro Ohmiya. All rights reserved. Omega-3 Fatty Acids Inhibit Tumor Growth in a Rat Model of Bladder Cancer Thu, 20 Jun 2013 08:23:45 +0000 http://www.hindawi.com/journals/bmri/2013/368178/ Omega-3 (-3) fatty acids have been tested on prevention and treatment of several cancer types, but the efficacy on “in vivo” bladder cancer has not been analyzed yet. This study aimed at evaluating the chemopreventive efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) mixture in an animal model of bladder cancer. Forty-four male Wistar rats were divided into 4 groups during a 20-week protocol: control; carcinogen—N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN); -3 (DHA + EPA); and -3 + BBN. BBN and -3 were given during the initial 8 weeks. At week 20 blood and bladder were collected and checked for the presence of urothelium lesions and tumors, markers of inflammation, proliferation, and redox status. Incidence of bladder carcinoma was, control (0%), -3 (0%), BBN (65%), and -3 + BBN (62.5%). The -3 + BBN group had no infiltrative tumors or carcinoma in situ, and tumor volume was significantly reduced compared to the BBN (0.9 ± 0.1 mm3 versus 112.5 ± 6.4 mm3). Also, it showed a reduced MDA/TAS ratio and BBN-induced serum CRP, TGF-β1, and CD31 were prevented. In conclusion, omega-3 fatty acids inhibit the development of premalignant and malignant lesions in a rat model of bladder cancer, which might be due to anti-inflammatory, antioxidant, anti-proliferative, and anti-angiogenic properties. Belmiro Parada, Flávio Reis, Raquel Cerejo, Patrícia Garrido, José Sereno, Maria Xavier-Cunha, Paula Neto, Alfredo Mota, Arnaldo Figueiredo, and Frederico Teixeira Copyright © 2013 Belmiro Parada et al. All rights reserved. Recent Developments in Nanoparticle-Based siRNA Delivery for Cancer Therapy Mon, 17 Jun 2013 18:44:47 +0000 http://www.hindawi.com/journals/bmri/2013/782041/ RNA interference (RNAi) is a gene regulation mechanism initiated by RNA molecules that enables sequence-specific gene silencing by promoting degradation of specific mRNAs. Molecular therapy using small interfering RNA (siRNA) has shown great therapeutic potential for diseases caused by abnormal gene overexpression or mutation. The major challenges to application of siRNA therapeutics include the stability and effective delivery of siRNA in vivo. Important progress in nanotechnology has led to the development of efficient siRNA delivery systems. In this review, the authors discuss recent advances in nanoparticle-mediated siRNA delivery and the application of siRNA in clinical trials for cancer therapy. This review will also offer perspectives on future applications of siRNA therapeutics. Jong-Min Lee, Tae-Jong Yoon, and Young-Seok Cho Copyright © 2013 Jong-Min Lee et al. All rights reserved. Extremophilic SHMTs: From Structure to Biotechnology Thu, 13 Jun 2013 13:05:10 +0000 http://www.hindawi.com/journals/bmri/2013/851428/ Recent advances in molecular and structural biology have improved the availability of virtually any biocatalyst in large quantity and have also provided an insight into the detailed structure-function relationships of many of them. These results allowed the rational exploitation of biocatalysts for use in organic synthesis. In this context, extremophilic enzymes are extensively studied for their potential interest for many biotechnological and industrial applications, as they offer increased rates of reactions, higher substrate solubility, and/or longer enzyme half-lives at the conditions of industrial processes. Serine hydroxymethyltransferase (SHMT), for its ubiquitous nature, represents a suitable model for analyzing enzyme adaptation to extreme environments. In fact, many SHMT sequences from Eukarya, Eubacteria and Archaea are available in data banks as well as several crystal structures. In addition, SHMT is structurally conserved because of its critical metabolic role; consequently, very few structural changes have occurred during evolution. Our research group analyzed the molecular basis of SHMT adaptation to high and low temperatures, using experimental and comparative in silico approaches. These structural and functional studies of SHMTs purified from extremophilic organisms can help to understand the peculiarities of the enzyme activity at extreme temperatures, indicating possible strategies for rational enzyme engineering. Sebastiana Angelaccio Copyright © 2013 Sebastiana Angelaccio. All rights reserved. The Omega-3 Polyunsaturated Fatty Acid DHA Induces Simultaneous Apoptosis and Autophagy via Mitochondrial ROS-Mediated Akt-mTOR Signaling in Prostate Cancer Cells Expressing Mutant p53 Mon, 10 Jun 2013 08:27:54 +0000 http://www.hindawi.com/journals/bmri/2013/568671/ Docosahexaenoic acid (DHA) induces autophagy-associated apoptotic cell death in wild-type p53 cancer cells via regulation of p53. The present study investigated the effects of DHA on PC3 and DU145 prostate cancer cell lines harboring mutant p53. Results show that, in addition to apoptosis, DHA increased the expression levels of lipidated form LC3B and potently stimulated the autophagic flux, suggesting that DHA induces both autophagy and apoptosis in cancer cells expressing mutant p53. DHA led to the generation of mitochondrial reactive oxygen species (ROS), as shown by the mitochondrial ROS-specific probe mitoSOX. Similarly, pretreatment with the antioxidant N-acetyl-cysteine (NAC) markedly inhibited both the autophagy and the apoptosis triggered by DHA, indicating that mitochondrial ROS mediate the cytotoxicity of DHA in mutant p53 cells. Further, DHA reduced the levels of phospho-Akt and phospho-mTOR in a concentration-dependent manner, while NAC almost completely blocked that effect. Collectively, these findings present a novel mechanism of ROS-regulated apoptosis and autophagy that involves Akt-mTOR signaling in prostate cancer cells with mutant p53 exposed to DHA. Soyeon Shin, Kaipeng Jing, Soyeon Jeong, Nayeong Kim, Kyoung-Sub Song, Jun-Young Heo, Ji-Hoon Park, Kang-Sik Seo, Jeongsu Han, Jong-Il Park, Gi-Ryang Kweon, Seung-Kiel Park, Tong Wu, Byung-Doo Hwang, and Kyu Lim Copyright © 2013 Soyeon Shin et al. All rights reserved. Advances in Molecular Diagnostics Mon, 27 May 2013 09:43:28 +0000 http://www.hindawi.com/journals/bmri/2013/172521/ Tavan Janvilisri, Arun K. Bhunia, and Joy Scaria Copyright © 2013 Tavan Janvilisri et al. All rights reserved. Interaction of Human Dopa Decarboxylase with L-Dopa: Spectroscopic and Kinetic Studies as a Function of pH Sun, 26 May 2013 10:15:16 +0000 http://www.hindawi.com/journals/bmri/2013/161456/ Human Dopa decarboxylase (hDDC), a pyridoxal 5′-phosphate (PLP) enzyme, displays maxima at 420 and 335 nm and emits fluorescence at 384 and 504 nm upon excitation at 335 nm and at 504 nm when excited at 420 nm. Absorbance and fluorescence titrations of hDDC-bound coenzyme identify a single of ~7.2. This could not represent the ionization of a functional group on the Schiff base but that of an enzymic residue governing the equilibrium between the low- and the high-pH forms of the internal aldimine. During the reaction of hDDC with L-Dopa, monitored by stopped-flow spectrophotometry, a 420 nm band attributed to the 4′-N-protonated external aldimine first appears, and its decrease parallels the emergence of a 390 nm peak, assigned to the 4′-N-unprotonated external aldimine. The pH profile of the spectral change at 390 nm displays a pK of 6.4, a value similar to that (~6.3) observed in both and profiles. This suggests that this pK represents the ESH+ → ES catalytic step. The assignment of the pKs of 7.9 and 8.3 observed on the basic side of and the PLP binding affinity profiles, respectively, is also analyzed and discussed. Riccardo Montioli, Barbara Cellini, Mirco Dindo, Elisa Oppici, and Carla Borri Voltattorni Copyright © 2013 Riccardo Montioli et al. All rights reserved. Mechanisms of Omega-3 Polyunsaturated Fatty Acids in Prostate Cancer Prevention Thu, 23 May 2013 16:27:22 +0000 http://www.hindawi.com/journals/bmri/2013/824563/ This review focuses on several key areas where progress has been made recently to highlight the role of omega-3 polyunsaturated fatty acid in prostate cancer prevention. Zhennan Gu, Janel Suburu, Haiqin Chen, and Yong Q. Chen Copyright © 2013 Zhennan Gu et al. All rights reserved. Dietary ω-3 Polyunsaturated Fatty Acid DHA: A Potential Adjuvant in the Treatment of Cancer Thu, 23 May 2013 15:52:33 +0000 http://www.hindawi.com/journals/bmri/2013/310186/ ω-3 Polyunsaturated fatty acids (PUFAs), mainly present in fish oil, are part of the human diet. Among PUFAs, docosahexaenoic acid (DHA) has received particular attention for its anti-inflammatory, antiproliferative, proapoptotic, antiangiogenetic, anti-invasion, and antimetastatic properties. These data suggest that DHA can exert antitumor activity potentially representing an effective adjuvant in cancer chemotherapy. This review is focused on current knowledge supporting the potential use of DHA for the enhancement of the efficacy of anticancer treatments in relation to its ability to enhance the uptake of anticancer drugs, regulate the oxidative status of tumor cells, and inhibit tumor cell invasion and metastasis. Nicolò Merendino, Lara Costantini, Laura Manzi, Romina Molinari, Donatella D'Eliseo, and Francesca Velotti Copyright © 2013 Nicolò Merendino et al. All rights reserved. Laboratory Medicine Tue, 14 May 2013 10:38:31 +0000 http://www.hindawi.com/journals/bmri/2013/269194/ Mina Hur, Andrew St. John, and Antonio La Gioia Copyright © 2013 Mina Hur et al. All rights reserved. Oxidation of Marine Omega-3 Supplements and Human Health Tue, 30 Apr 2013 16:26:57 +0000 http://www.hindawi.com/journals/bmri/2013/464921/ Marine omega-3 rich oils are used by more than a third of American adults for a wide range of purported benefits including prevention of cardiovascular disease. These oils are highly prone to oxidation to lipid peroxides and other secondary oxidation products. Oxidized oils may have altered biological activity making them ineffective or harmful, though there is also evidence that some beneficial effects of marine oils could be mediated through lipid peroxides. To date, human clinical trials have not reported the oxidative status of the trial oil. This makes it impossible to understand the importance of oxidation to efficacy or harm. However, animal studies show that oxidized lipid products can cause harm. Oxidation of trial oils may be responsible for the conflicting omega-3 trial literature, including the prevention of cardiovascular disease. The oxidative state of an oil can be simply determined by the peroxide value and anisidine value assays. We recommend that all clinical trials investigating omega-3 harms or benefits report the results of these assays; this will enable better understanding of the benefits and harms of omega-3 and the clinical importance of oxidized supplements. Benjamin B. Albert, David Cameron-Smith, Paul L. Hofman, and Wayne S. Cutfield Copyright © 2013 Benjamin B. Albert et al. All rights reserved. Effect of Tea (Camellia sinensis) and Olive (Olea europaea L.) Leaves Extracts on Male Mice Exposed to Diazinon Thu, 18 Apr 2013 08:44:58 +0000 http://www.hindawi.com/journals/bmri/2013/461415/ The present study was aimed to evaluate the effects of tea and olive leaves extracts and their combination in male mice intoxicated with a sublethal concentration of diazinon. Exposure of mice to 6.5 mg/kg body weight of diazinon for seven weeks resulted in statistical increases of serum alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, alkaline phosphatase, creatine kinase, creatinine, glucose, triglycerides, and cholesterol, while the value of serum total protein was declined. Treating diazinon-intoxicated mice with tea and olive leaves extracts or their combination significantly attenuated the severe alterations in these hematobiochemical parameters. Moreover, the results indicated that the supplementation with combination of tea and olive leaves extracts led to more attenuation effect against diazinon toxicity. Additionally, these new findings suggest that the effect of tea and olive leaves extracts and their combination against toxicity of diazinon may be due to antioxidant properties of their chemical constituents. Finally, the present study indicated that the extracts of tea and olive leaves and their combination can be considered as promising therapeutic agents against hepatotoxicity, cardiotoxicity, nephrotoxicity, and metabolic disorders induced by diazinon and maybe by other toxicants and pathogenic factors. Atef M. Al-Attar and Isam M. Abu Zeid Copyright © 2013 Atef M. Al-Attar and Isam M. Abu Zeid. All rights reserved. Experimental Evidence of -3 Polyunsaturated Fatty Acid Modulation of Inflammatory Cytokines and Bioactive Lipid Mediators: Their Potential Role in Inflammatory, Neurodegenerative, and Neoplastic Diseases Wed, 17 Apr 2013 20:19:08 +0000 http://www.hindawi.com/journals/bmri/2013/743171/ A large body of evidence has emerged over the past years to show the critical role played by inflammation in the pathogenesis of several diseases including some cardiovascular, neoplastic, and neurodegenerative diseases, previously not considered inflammation-related. The anti-inflammatory action of -3 polyunsaturated fatty acids (PUFAs), as well as their potential healthy effects against the development and progression of the same diseases, has been widely studied by our and others’ laboratories. As a result, a rethinking is taking place on the possible mechanisms underlying the beneficial effects of -3 PUFAs against these disorders, and, in particular, on the influence that they may exert on the molecular pathways involved in inflammatory process, including the production of inflammatory cytokines and lipid mediators active in the resolving phase of inflammation. In the present review we will summarize and discuss the current knowledge regarding the modulating effects of -3 PUFAs on the production of inflammatory cytokines and proresolving or protective lipid mediators in the context of inflammatory, metabolic, neurodegenerative, and neoplastic diseases. Gabriella Calviello, Hui-Min Su, Karsten H. Weylandt, Elena Fasano, Simona Serini, and Achille Cittadini Copyright © 2013 Gabriella Calviello et al. All rights reserved. Chemical Composition, Nutritive Value, and Toxicological Evaluation of Bauhinia cheilantha Seeds: A Legume from Semiarid Regions Widely Used in Folk Medicine Wed, 17 Apr 2013 11:42:45 +0000 http://www.hindawi.com/journals/bmri/2013/578781/ Among the Bauhinia species, B. cheilantha stands out for its seed protein content. However, there is no record of its nutritional value, being used in a nonsustainable way in the folk medicine and for large-scale extraction of timber. The aim of this study was to investigate the food potential of B. cheilantha seeds with emphasis on its protein quality to provide support for flora conservation and use as raw material or as prototype for the development of bioproducts with high added socioeconomic value. B. cheilantha seeds show high protein content (35.9%), reasonable essential amino acids profile, low levels of antinutritional compounds, and nutritional parameters comparable to those of legumes widely used such as soybean and cowpea. The heat treatment of the seeds as well as the protein extraction process (to obtain the protein concentrate) increased the acceptance of diets by about 100% when compared to that of raw Bc diet. These wild legume seeds can be promising alternative source of food to overcome the malnutrition problem faced by low income people adding socioeconomic value to the species. Daniel Câmara Teixeira, Davi Felipe Farias, Ana Fontenele Urano Carvalho, Mariana Reis Arantes, José Tadeu Abreu Oliveira, Daniele Oliveira Bezerra Sousa, Mirella Leite Pereira, Hermogenes David Oliveira, Manoel Andrade-Neto, and Ilka Maria Vasconcelos Copyright © 2013 Daniel Câmara Teixeira et al. All rights reserved. Cardioprotective Effects of ω-3 PUFAs in Chronic Kidney Disease Thu, 04 Apr 2013 10:00:37 +0000 http://www.hindawi.com/journals/bmri/2013/712949/ The prevalence rate of chronic kidney disease (CKD) is increasing worldwide, and cardiovascular disease (CVD) is a main cause of death in patients with CKD. The high incidence of CVD in CKD patients is related to chronic inflammation, dyslipidemia, malnutrition, atherosclerosis, and vascular calcification. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been shown to reduce the risk of CVD. In this paper, we review the beneficial effects of ω-3 PUFAs on CVD and the possible cardioprotective mechanisms of ω-3 PUFAs in CKD patients by determining the effect of ω-3 PUFAs in the general population. ω-3 PUFAs have several cardioprotective benefits, such as reducing inflammation, decreasing oxidative stress, inhibiting platelet activity, exerting antiarrhythmic effects, and improving triglyceride levels, in the general population and patients with CKD. Modifications of erythrocyte membrane fatty acid content, including an increased ω-3 index and decreased oleic acid, after ω-3 PUFAs supplementation are important changes related to CVD risk reduction in the general population and patients with CKD. Further basic and clinical studies are essential to confirm the effects of ω-3 PUFAs on vitamin D activation, vascular calcification prevention, cardiovascular events, and mortality in CKD patients. Su Mi Lee and Won Suk An Copyright © 2013 Su Mi Lee and Won Suk An. All rights reserved. Amylin Uncovered: A Review on the Polypeptide Responsible for Type II Diabetes Sun, 31 Mar 2013 10:18:19 +0000 http://www.hindawi.com/journals/bmri/2013/826706/ Amylin is primarily responsible for classifying type II diabetes as an amyloid (protein misfolding) disease as it has great potential to aggregate into toxic nanoparticles, thereby resulting in loss of pancreatic -cells. Although type II diabetes is on the increase each year, possibly due to bad eating habits of modern society, research on the culprit for this disease is still in its early days. In addition, unlike the culprit for Alzheimer’s disease, amyloid -peptide, amylin has failed to receive attention worthy of being featured in an abundance of review articles. Thus, the aim of this paper is to shine the spotlight on amylin in an attempt to put it onto the top of researchers’ to-do list since the secondary complications of type II diabetes have far-reaching and severe consequences on public health both in developing and fully developed countries alike. This paper will cover characteristics of the amylin aggregates, mechanisms of toxicity, and a particular focus on inhibitors of toxicity and techniques used to assess these inhibitors. Karen Pillay and Patrick Govender Copyright © 2013 Karen Pillay and Patrick Govender. All rights reserved. Mean Platelet Volume Reflect Hematopoietic Potency and Correlated Blood Group O in Cord Blood from Healthy Newborn Wed, 27 Mar 2013 18:25:21 +0000 http://www.hindawi.com/journals/bmri/2013/754169/ We evaluated the relationship between mean platelet volume (MPV) and characteristics of 10,577 cord blood (CB) units in a public CB bank in Korea. Blood group O has the highest MPV ( = 0.002). MPV correlated with CB volume (), Hb (), WBC (), TNCs (), CD34+ cell (), CD34+ cells/TNCs (), gestational age ( = −0.102), and birth weight (); ( in all). MPV may be one of the useful decision parameters of process priority in CB bank. Hye Ryun Lee, Jeong Su Park, Sue Shin, Eun Youn Roh, Jong Hyun Yoon, Eun Young Song, Byung Jae Kim, and Ju Young Chang Copyright © 2013 Hye Ryun Lee et al. All rights reserved. NGAL and Metabolomics: The Single Biomarker to Reveal the Metabolome Alterations in Kidney Injury Wed, 27 Mar 2013 10:55:22 +0000 http://www.hindawi.com/journals/bmri/2013/612032/ Conditions affecting kidney structure and function can be considered acute or chronic, depending on their duration. Acute kidney injury (AKI) is one of a number of acute kidney diseases and consists of an abrupt decline in kidney function after an injury leading to functional and structural changes. The widespread availability of enabling technologies has accelerated the rate of novel biomarker discovery for kidney injury. The introduction of novel biomarkers in clinical practice will lead to better preventative and therapeutic interventions and to improve outcomes of critically ill patients. A number of biomarkers of functional change and cellular damage are under evaluation for early diagnosis, risk assessment, and prognosis of AKI. Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as the most promising biomarker of kidney injury; this protein can be measured by commercially available methods in whole blood, plasma, serum, and urine. Concomitantly, metabolomics appears to be a snapshot of the chemical fingerprints identifying specific cellular processes. In this paper, we describe the role of NGAL for managing AKI and the potential benefits deriving from the combined clinical use of urine NGAL and metabolomics in kidney disease. A. Noto, F. Cibecchini, V. Fanos, and M. Mussap Copyright © 2013 A. Noto et al. All rights reserved. The Associated Ion between the VDR Gene Polymorphisms and Susceptibility to Hepatocellular Carcinoma and the Clinicopathological Features in Subjects Infected with HBV Sat, 23 Mar 2013 17:48:29 +0000 http://www.hindawi.com/journals/bmri/2013/953974/ Aim. To evaluate the possible association between the vitamin D receptor (VDR), single-nucleotide polymorphisms (SNPs), and hepatocellular carcinoma (HCC) in patients with chronic hepatitis B virus (HBV) infection. Method. 968 chronic HBV infection patients were enrolled, of which 436 patients were diagnosed HCC patients, and 532 were non-HCC patients. The clinicopathological characteristics of HCC were evaluated. The genotypes of VDR gene at FokI, BsmI, ApaI, and TaqI were determined. Results. The genotype frequencies of VDR FokI C>T polymorphism were significantly different between HCC and non-HCC groups. HCC patients had a higher prevalence of FokI TT genotype than non-HCC subjects. With FokI CC as reference, the TT carriage had a significantly higher risk for development of HCC after adjustments with age, sex, HBV infection time, α-fetoprotein, smoking status, and alcohol intake. In addition, we also found that the TT genotype carriage of FokI polymorphisms were associated with advanced tumor stage, presence of cirrhosis, and lymph node metastasis. The SNP at BsmI, ApaI, and TaqI did not show positive association with the risk and clinicopathological features of HCC. Conclusion. The FokI C>T polymorphisms may be used as a molecular marker to predict the risk and to evaluate the disease severity of HCC in those infected with HBV. Xing Yao, Huazong Zeng, Guolei Zhang, Weimin Zhou, Qiang Yan, Licheng Dai, and Xiang Wang Copyright © 2013 Xing Yao et al. All rights reserved. Evaluation of Multiplex PCR with Enhanced Spore Germination for Detection of Clostridium difficile from Stool Samples of the Hospitalized Patients Sun, 17 Mar 2013 15:37:04 +0000 http://www.hindawi.com/journals/bmri/2013/875437/ Clostridium difficile poses as the most common etiologic agent of nosocomial diarrhea. Although there are many diagnostic methods to detect C. difficile directly from stool samples, the nucleic acid-based approach has been largely performed in several laboratories due to its high sensitivity and specificity as well as rapid turnaround time. In this study, a multiplex PCR was newly designed with recent accumulated nucleotide sequences. The PCR testing with various C. difficile ribotypes, other Clostridium spp., and non-Clostridium strains revealed 100% specificity with the ability to detect as low as ~22 genomic copy number per PCR reaction. Different combinations of sample processing were evaluated prior to multiplex PCR for the detection of C. difficile in fecal samples from hospitalized patients. The most optimal condition was the non-selective enrichment at 37∘C for 1 h in brain heart infusion broth supplemented with taurocholate, followed by the multiplex PCR. The detection limit after sample processing was shown as being 5 spores per gram of fecal sample. Two hundred and thirty-eight fecal samples collected from the University affiliated hospital were analyzed by the enrichment multiplex PCR procedure. The results suggested that the combination of sample processing with the high-performance detection method would be applicable for routine diagnostic use in clinical setting. Surang Chankhamhaengdecha, Piyapong Hadpanus, Amornrat Aroonnual, Puriya Ngamwongsatit, Darunee Chotiprasitsakul, Piriyaporn Chongtrakool, and Tavan Janvilisri Copyright © 2013 Surang Chankhamhaengdecha et al. All rights reserved. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L. Sun, 17 Mar 2013 15:29:38 +0000 http://www.hindawi.com/journals/bmri/2013/727143/ Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. Tae Hyeon Kim, Jin Kyu Kim, Young-Hee Kang, Jae-Yong Lee, Il Jun Kang, and Soon Sung Lim Copyright © 2013 Tae Hyeon Kim et al. All rights reserved. An Effective Degumming Enzyme from Bacillus sp. Y1 and Synergistic Action of Hydrogen Peroxide and Protease on Enzymatic Degumming of Ramie Fibers Sun, 17 Mar 2013 15:21:46 +0000 http://www.hindawi.com/journals/bmri/2013/212315/ Enzymatic degumming, as an alternative to chemical processing, has attracted wide attention. However, to date, little information about other enzyme components with effective degumming except pectinase has been reported, and there is no report about the effect of bleaching agent (H2O2) on enzymatic degumming and combining enzymatic degumming and H2O2 bleaching process. In this study, we found that the crude enzyme of wild-type Bacillus sp. Y1 had a powerful and fast degumming ability. Its PGL activity was the highest at pH 9.6–10.0 and and stable at pH 7–10.5 and 30–, having a wide scope of pH and temperature. Its PGL also had a high H2O2 tolerance, and the gum loss and brightness of fibers could be significantly improved when H2O2 was added into it for degumming. The synergistic action was also found between it and H2O2 on the degumming and bleaching of ramie fibers. All showed that it was very suitable for a joint process of enzymatic degumming and H2O2 bleaching. It also contained more proteins compared with a control pectinase, and its high protease content was further substantiated as a factor for effective degumming. Protease and pectinase also had a synergistic action on degumming. Fenfen Guo, Mouyong Zou, Xuezhi Li, Jian Zhao, and Yinbo Qu Copyright © 2013 Fenfen Guo et al. All rights reserved. Structures and Properties of Naturally Occurring Polyether Antibiotics Sun, 17 Mar 2013 15:14:23 +0000 http://www.hindawi.com/journals/bmri/2013/162513/ Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties. Jacek Rutkowski and Bogumil Brzezinski Copyright © 2013 Jacek Rutkowski and Bogumil Brzezinski. All rights reserved. Development of a Broad-Range 23S rDNA Real-Time PCR Assay for the Detection and Quantification of Pathogenic Bacteria in Human Whole Blood and Plasma Specimens Sun, 17 Mar 2013 14:16:01 +0000 http://www.hindawi.com/journals/bmri/2013/264651/ Molecular methods are important tools in the diagnosis of bloodstream bacterial infections, in particular in patients treated with antimicrobial therapy, due to their quick turn-around time. Here we describe a new broad-range real-time PCR targeting the 23S rDNA gene and capable to detect as low as 10 plasmid copies per reaction of targeted bacterial 23S rDNA gene. Two commercially available DNA extraction kits were evaluated to assess their efficiency for the extraction of plasma and whole blood samples spiked with different amount of either Staphylococcus aureus or Escherichia coli, in order to find the optimal extraction method to be used. Manual QIAmp extraction method with enzyme pre-treatment resulted the most sensitive for detection of bacterial load. Sensitivity of this novel assay ranged between 10 and 103 CFU per PCR reaction for E. coli and S. aureus in human whole blood samples depending on the extraction methods used. Analysis of plasma samples showed a 10- to 100-fold reduction of bacterial 23S rDNA in comparison to the corresponding whole blood specimens, thus indicating that whole blood is the preferential sample type to be used in this real-time PCR protocol. Our results thus show that the 23S rDNA gene represents an optimal target for bacteria quantification in human whole blood. Paolo Gaibani, Mara Mariconti, Gloria Bua, Sonia Bonora, Davide Sassera, Maria Paola Landini, Patrizia Mulatto, Stefano Novati, Claudio Bandi, and Vittorio Sambri Copyright © 2013 Paolo Gaibani et al. All rights reserved. Detection of Mycobacterium tuberculosis by Using Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Dipstick in Clinical Samples Tue, 05 Mar 2013 08:06:58 +0000 http://www.hindawi.com/journals/bmri/2013/926230/ Tuberculosis (TB) is a communicable disease caused by the bacterium Mycobacterium tuberculosis (MTB) and is a persistent problem in the developing countries. Loop-mediated isothermal amplification (LAMP) allows DNA to be amplified rapidly at a constant temperature. Here, a LAMP method was combined with a chromatographic lateral-flow dipstick (LFD) to detect IS6110 gene of M. tuberculosis specifically and rapidly. The reaction was optimized at 63°C for 60 min, and the amplified DNA hybridized to an FITC-labeled oligonucleotide probe for 5 min was detected at the LFD test line 5 min after application. Excluding the step of DNA extraction, the test results could be generated approximately within 1 h. In addition to the advantage of short assay time, this technique could avoid the contact of carcinogenic ethidium bromide due to the exclusion of the electrophoresis analysis step. Furthermore, the data indicated that LAMP-LFD could detect M. tuberculosis genomic DNA as little as 5 pg. The technique showed a significant specificity since no cross-hybridization to M. intracellulare (MIC), M. fortuitum (MFT), M. avium (MAV), M. kansasii (MKS), and M. gordonae (MGD) genomic DNAs was observed. In the clinical unknown samples test, the sensitivity of LAMP-LFD was 98.92 % and the specificity was 100 % compared to those of the standard culture assay. Based on its sensitivity, specificity, rapidity, low cost, and convenience, LAMP-LFD could be applicable for use in both laboratories and epidemiological surveys of MTB. Thongchai Kaewphinit, Narong Arunrut, Wansika Kiatpathomchai, Somchai Santiwatanakul, Pornpun Jaratsing, and Kosum Chansiri Copyright © 2013 Thongchai Kaewphinit et al. All rights reserved. A Review of Haptoglobin Typing Methods for Disease Association Study and Preventing Anaphylactic Transfusion Reaction Thu, 28 Feb 2013 19:05:50 +0000 http://www.hindawi.com/journals/bmri/2013/390630/ Haptoglobin, the product of the gene, is a glycoprotein involved in the scavenging of free hemoglobin. Haptoglobin levels increase or decrease in response to various acquired conditions, and they are also influenced by genetic predisposition. There were 2 major alleles, and , and 1 minor allele, . Many researchers have attempted to study the haptoglobin types and their association with disease; however, no definitive conclusions have been reached yet. It is reported that patients who are genetically deficient in haptoglobin are at risk of anaphylaxis against blood components containing haptoglobin. Haptoglobin genotypes also affect the reference intervals of haptoglobin levels. Many studies have attempted to establish simple and accurate typing methods. In this paper, we have broadly reviewed several methods for haptoglobin typing—phenotyping, Southern blotting, conventional PCR, real-time PCR, and loop-mediated isothermal amplification. We discuss their characteristics, clinical applications, and limitations. The phenotyping methods are time consuming and labor intensive and not designed to detect patients harboring . The rapid and robust haptoglobin genotyping may help in preventing fatal anaphylactic reactions and in establishing the relationships between the haptoglobin phenotypes and diseases. Dae-Hyun Ko, Ho Eun Chang, Taek Soo Kim, Eun Young Song, Kyoung Un Park, Junghan Song, and Kyou Sup Han Copyright © 2013 Dae-Hyun Ko et al. All rights reserved. Potential Use of Atlantic Cod Trypsin in Biomedicine Thu, 28 Feb 2013 16:12:34 +0000 http://www.hindawi.com/journals/bmri/2013/749078/ Surface proteins of viruses and bacteria used for cell attachment and invasion are candidates for degradation by proteases. Trypsin from Atlantic cod (Gadus morhua) was previously demonstrated to have efficacy against influenza viruses in vitro and on skin. In this paper, cod trypsin is shown to be 3–12 times more effective in degrading large native proteins than its mesophilic analogue, bovine trypsin. This is in agreement with previous findings where cod trypsin was found to be the most active among twelve different proteases in cleaving various cytokines and pathological proteins. Furthermore, our results show that cod trypsin has high efficacy against herpes simplex virus type 1 (HSV-1) and the respiratory syncytial virus (RSV) in vitro. The results on the antipathogenic properties of cod trypsin are important because rhinovirus, RSV, and influenza are the most predominant pathogenic viruses in upper respiratory tract infections. Results from a clinical study presented in this paper show that a specific formulation containing cod trypsin was preferred for wound healing over other methods used in the study. Apparently, the high digestive ability of the cold-adapted cod trypsin towards large native proteins plays a role in its efficacy against pathogens and its positive effects on wounds. Ágústa Gudmundsdóttir, Hilmar Hilmarsson, and Bjarki Stefansson Copyright © 2013 Ágústa Gudmundsdóttir et al. All rights reserved. Development of a Prognostic Score Using the Complete Blood Cell Count for Survival Prediction in Unselected Critically Ill Patients Thu, 28 Feb 2013 15:58:05 +0000 http://www.hindawi.com/journals/bmri/2013/105319/ Objective. The purpose of this study was to develop a new prognostic scoring system for critically ill patients using the simple complete blood cell count (CBC). Methods. CBC measurements in samples from 306 patients in an intensive care unit were conducted with automated analyzers, including levels of neutrophils, lymphocytes, erythrocytes, hemoglobin, and platelets. The time of sampling and the time of death were recorded. values were calculated according to the measured values, reference mean values, and standard deviations. The prognostic score was equivalent to the median of the value of each of the measured parameters. Results. There was a significant correlation between survival time and neutrophil, lymphocyte, and platelet levels (). Prognostic scores were calculated from the value of these three parameters. Survival times decreased as the prognostic score increased. Conclusions. This study suggests that a model that uses levels of neutrophils, lymphocytes, and platelets is potentially useful in the objective evaluation of survival time or disease severity in unselected critically ill patients. Fang Chongliang, Li Yuzhong, Shi Qian, Liu Xiliang, and Liu Hui Copyright © 2013 Fang Chongliang et al. All rights reserved. Validation of New Allele-Specific Real-Time PCR System for Thiopurine Methyltransferase Genotyping in Korean Population Thu, 28 Feb 2013 11:22:01 +0000 http://www.hindawi.com/journals/bmri/2013/305704/ Introduction. Thiopurine drugs are metabolized via S-methylation and catalyzed by thiopurine S-methyltransferase (TPMT). Patients with very low TPMT activity are at high risk of fatal bone marrow toxicity when standard doses of thiopurine drugs are administered. TPMT genotyping can predict TPMT activity and is not affected by transfusion or red blood cell defects. Here, we report a new allele-specific real-time polymerase chain reaction (PCR) system for thiopurine methyltransferase genotyping that is validated in Korean population. Materials and Methods. Three major TPMT single-nucleotide polymorphisms (TPMT*2, *3B, and *3C) were genotyped using real-time PCR with the allele-specific primers and probes. Internal positive controls were included in each well, and an automatic interpretative algorithm was applied. This system was validated using 244 clinical samples and 2 commercial DNA samples that had been previously genotyped using PCR-direct sequencing. Results. All of the obtained results are concordant with those of the reference method. All of the internal positive control reactions were successful. The allele frequency of TPMT*3C was 2.05% (10 of 488 alleles). All of the patients with variant alleles were heterozygotes, and no homozygotes were detected. No TPMT*2, *3A, or *3B alleles were observed in this Korean population. Conclusion. This rapid, accurate, and user-friendly genotyping system can be readily used to improve the efficacy and safety of thiopurine treatments in clinical practice. Sollip Kim, Hye Won Lee, Woochang Lee, Sail Chun, and Won-Ki Min Copyright © 2013 Sollip Kim et al. All rights reserved. Total 25-Hydroxyvitamin D Determination by an Entry Level Triple Quadrupole Instrument: Comparison between Two Commercial Kits Thu, 28 Feb 2013 11:20:23 +0000 http://www.hindawi.com/journals/bmri/2013/270426/ Objective. 25-hydroxyvitamin D2/D3 (25-OHD2/D3) determination is a reliable biomarker for vitamin D status. Liquid chromatography-tandem mass spectrometry was recently proposed as a reference method for vitamin D status evaluation. The aim of this work is to compare two commercial kits (Chromsystems and PerkinElmer) for 25-OHD2/D3 determination by our entry level LC-MS/MS. Design and Methods. Chromsystems kit adds an online trap column to an HPLC column and provides atmospheric pressure chemical ionization, isotopically labeled internal standard, and 4 calibrator points. PerkinElmer kit uses a solvent extraction and protein precipitation method. This kit can be used with or without derivatization with, respectively, electrospray and atmospheric pressure chemical ionization. For each analyte, there are isotopically labeled internal standards and 7 deuterated calibrator points. Results. Performance characteristics are acceptable for both methods. Mean bias between methods calculated on 70 samples was 1.9 ng/mL. Linear regression analysis gave an of 0.94. 25-OHD2 is detectable only with PerkinElmer kit in derivatized assay option. Conclusion. Both methods are suitable for routine. Chromsystems kit minimizes manual sample preparation, requiring only protein precipitation, but, with our system, 25-OHD2 is not detectable. PerkinElmer kit without derivatization does not guarantee acceptable performance with our LC-MS/MS system, as sample is not purified online. Derivatization provides sufficient sensitivity for 25-OHD2 detection. Jacopo Gervasoni, Andrea Cocci, Cecilia Zuppi, and Silvia Persichilli Copyright © 2013 Jacopo Gervasoni et al. All rights reserved. Biomarkers of Hypochromia: The Contemporary Assessment of Iron Status and Erythropoiesis Thu, 28 Feb 2013 10:51:44 +0000 http://www.hindawi.com/journals/bmri/2013/603786/ Iron status is the result of the balance between the rate of erythropoiesis and the amount of the iron stores. Direct consequence of an imbalance between the erythroid marrow iron requirements and the actual supply is a reduction of red cell hemoglobin content, which causes hypochromic mature red cells and reticulocytes. The diagnosis of iron deficiency is particularly challenging in patients with acute or chronic inflammatory conditions because most of the biochemical markers for iron metabolism (serum ferritin and transferrin ) are affected by acute phase reaction. For these reasons, interest has been generated in the use of erythrocyte and reticulocyte parameters, available on the modern hematology analyzers. Reported during blood analysis routinely performed on the instrument, these parameters can assist in early detection of clinical conditions (iron deficiency, absolute, or functional; ineffective erythropoiesis, including iron restricted or thalassemia), without additional cost. Technological progress has meant that in recent years modern analyzers report new parameters that provide further information from the traditional count. Nevertheless these new parameters are exclusive of each manufacturer, and they are patented. This is an update of these new laboratory test biomarkers of hypochromia reported by different manufactures, their meaning, and clinical utility on daily practice. Eloísa Urrechaga, Luís Borque, and Jesús F. Escanero Copyright © 2013 Eloísa Urrechaga et al. All rights reserved. Coagulation Proteins Influencing Global Coagulation Assays in Cirrhosis: Hypercoagulability in Cirrhosis Assessed by Thrombomodulin-Induced Thrombin Generation Assay Thu, 21 Feb 2013 09:54:59 +0000 http://www.hindawi.com/journals/bmri/2013/856754/ Background. Liver disease is accompanied by profound hemostatic disturbances. We investigated the influences of pro- and anticoagulation factors on global coagulation tests including prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin generation assay (TGA) in cirrhosis. We also investigated whether cirrhotic patients exhibit hypo- or hypercoagulability using the TGA. Methods. The TGA was performed on a calibrated automated thrombogram, given lag time, endogenous thrombin potential (ETP), and peak thrombin in 156 cirrhotic patients and 73 controls. Results. PT was determined according to the factor (F) II, FV, FVII, FIX, and protein C levels. We observed that aPTT was dependent on FII, FIX, and FX levels. The ETP was dependent on FII, antithrombin, and protein C with 5 pM tissue factor (TF) stimulation, and FIX and protein C at 1 pM TF. The ETP ratio with 1 pM TF increased significantly in cirrhosis, indicating hypercoagulability, whereas that with 5 pM TF did not increase in cirrhosis. Conclusion. PT and the TGA are sensitive to protein C levels. Even with prolonged PT, the TGA can detect hypercoagulability in cirrhosis. Further studies should evaluate global coagulation status in cirrhosis patients using the newly devised TGA system. Nam Youngwon, Ji-Eun Kim, Hae Sook Lim, Kyou-Sup Han, and Hyun Kyung Kim Copyright © 2013 Nam Youngwon et al. All rights reserved. Two Classifiers Based on Serum Peptide Pattern for Prediction of HBV-Induced Liver Cirrhosis Using MALDI-TOF MS Tue, 19 Feb 2013 08:52:36 +0000 http://www.hindawi.com/journals/bmri/2013/814876/ Chronic infection with hepatitis B virus (HBV) is associated with the majority of cases of liver cirrhosis (LC) in China. Although liver biopsy is the reference method for evaluation of cirrhosis, it is an invasive procedure with inherent risk. The aim of this study is to discover novel noninvasive specific serum biomarkers for the diagnosis of HBV-induced LC. We performed bead fractionation/MALDI-TOF MS analysis on sera from patients with LC. Thirteen feature peaks which had optimal discriminatory performance were obtained by using support-vector-machine-(SVM-) based strategy. Based on the previous results, five supervised machine learning methods were employed to construct classifiers that discriminated proteomic spectra of patients with HBV-induced LC from those of controls. Here, we describe two novel methods for prediction of HBV-induced LC, termed LC-NB and LC-MLP, respectively. We obtained a sensitivity of 90.9%, a specificity of 94.9%, and overall accuracy of 93.8% on an independent test set. Comparisons with the existing methods showed that LC-NB and LC-MLP held better accuracy. Our study suggests that potential serum biomarkers can be determined for discriminating LC and non-LC cohorts by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. These two classifiers could be used for clinical practice in HBV-induced LC assessment. Yuan Cao, Kun He, Ming Cheng, Hai-Yan Si, He-Lin Zhang, Wei Song, Ai-Ling Li, Cheng-Jin Hu, and Na Wang Copyright © 2013 Yuan Cao et al. All rights reserved.