About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2011 (2011), Article ID 631607, 6 pages
http://dx.doi.org/10.1155/2011/631607
Review Article

Chemical Assistance in Refolding of Bacterial Inclusion Bodies

Medical Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13169 43551, Iran

Received 17 March 2011; Accepted 27 May 2011

Academic Editor: Daniel N. Hebert

Copyright © 2011 Mona Alibolandi and Hasan Mirzahoseini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. D. B. Clark, “Refolding of recombinant proteins,” Current Opinion in Biotechnology, vol. 9, no. 2, pp. 157–163, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. E. D. B. Clark, “Protein refolding for industrial processes,” Current Opinion in Biotechnology, vol. 12, no. 2, pp. 202–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. J. Middelberg, “Preparative protein refolding,” Trends in Biotechnology, vol. 20, no. 10, pp. 437–443, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Tsumoto, D. Ejima, I. Kumagai, and T. Arakawa, “Practical considerations in refolding proteins from inclusion bodies,” Protein Expression and Purification, vol. 28, no. 1, pp. 1–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Alibolandi, H. Mirzahoseini, F. M. Nehi, G. Tabatabaian, H. Amini, and S. Sardari, “Improving recombinant protein solubility in Escherichia coli: identification of best chaperone combination which assists folding of human basic fibroblast growth factor,” African Journal of Biotechnology, vol. 9, no. 47, pp. 8100–8109, 2010. View at Scopus
  6. H. Mirzahoseini, D. Shahbazzadeh, S. Enayati, M. Razzaghi Abyaneh, and F. Mahboudi, “Medium effect on heterologous protein leaky expression in Escherichia coli,” in Modern Mutidisciplinary Applied Microbiology, Exploiting Microbes and their Intractions, A. Mendez-Vilas, Ed., pp. 645–648, WILEY-VCH, Weinheim, Germany, 2006.
  7. M. Alibolandi, H. Mirzahoseini, M. A. K. Abad, and M. A. Movahed, “High level expression of human basic fibroblast growth factor in Escherichia coli: evaluating the effect of the GC content and rare codons within the first 13 codons,” African Journal of Biotechnology, vol. 9, no. 16, pp. 2456–2462, 2010. View at Scopus
  8. H. Mirzahoseini and M. Alibolandi, “Stability of recombinant proteins in Escherichia coli: the effect of co-expression of five different chaperone sets,” Journal of Sciences of Islamic Republic of Iran, vol. 20, no. 4, pp. 305–310, 2009.
  9. H. Mirzahoseini, A. Omumi, and E. Omidinia, “Investigation of reasons that imply the diminished Inclusion Bodies in E. coli,” Journal of Sciences of Islamic Republic of Iran, vol. 14, no. 2, pp. 113–119, 2003.
  10. Z. Huang and S. S. J. Leong, “Molecular-assisted refolding: study of two different ionic forms of recombinant human fibroblast growth factors,” Journal of Biotechnology, vol. 142, no. 2, pp. 157–163, 2009. View at Publisher · View at Google Scholar · View at PubMed
  11. K. Mondal, H. B. Bohidar, R. P. Roy, and M. N. Gupta, “Alginate-chaperoned facile refolding of Chromobacterium viscosum lipase,” Biochimica et Biophysica Acta, vol. 1764, no. 5, pp. 877–886, 2006. View at Publisher · View at Google Scholar · View at PubMed
  12. K. Mondal, S. Raghava, B. Barua, R. Varadarajan, and M. N. Gupta, “Role of stimuli-sensitive polymers in protein refolding: α-Amylase and CcdB (controller of cell division or death B) as model proteins,” Langmuir, vol. 23, no. 1, pp. 70–75, 2007. View at Publisher · View at Google Scholar · View at PubMed
  13. R. Kuboi, S. Morita, H. Ota, and H. Umakoshi, “Protein refolding using stimuli-responsive polymer-modified aqueous two- phase systems,” Journal of Chromatography B, vol. 743, no. 1-2, pp. 215–223, 2000. View at Publisher · View at Google Scholar
  14. N. Yoshimoto, T. Hashimoto, M. Menayame Felix, H. Umakoshi, and R. Kuboi, “Artificial chaperone-assisted refolding of bovine carbonic anhydrase using molecular assemblies of stimuli-responsive polymers,” Biomacromolecules, vol. 4, no. 6, pp. 1530–1538, 2003. View at Publisher · View at Google Scholar · View at PubMed
  15. Y. J. Chen, L. W. Huang, H. C. Chiu, and S. C. Lin, “Temperature-responsive polymer-assisted protein refolding,” Enzyme and Microbial Technology, vol. 32, no. 1, pp. 120–130, 2003. View at Publisher · View at Google Scholar
  16. Z. Cui, Y. Guan, and S. Yao, “Temperature-sensitive hydrogel refolding system: preparation of poly (N-isopropyl acrylamide) and its application in lysozyme refolding,” Chinese Journal of Chemical Engineering, vol. 12, no. 4, pp. 556–560, 2004.
  17. X. T. Wang and P. C. Engel, “An optimised system for refolding of human glucose 6-phosphate dehydrogenase,” BMC Biotechnology, vol. 9, article number 19, 2009. View at Publisher · View at Google Scholar · View at PubMed
  18. J. Buchner and R. Rudolph, “Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli,” Nature Biotechnology, vol. 9, no. 2, pp. 157–162, 1991.
  19. R. Rudolph and S. Fischer, “Process for obtaining renatured proteins,” US Patent No. 4, pp: 434, 1990.
  20. W. J. Lin and J. A. Traugh, “Renaturation of casein kinase II from recombinant subunits produced in Escherichia coli: purification and characterization of the reconstituted holoenzyme,” Protein Expression and Purification, vol. 4, no. 3, pp. 256–264, 1993. View at Publisher · View at Google Scholar · View at PubMed
  21. J. Buchner, U. Brinkmann, and I. Pastan, “Renaturation of a single-chain immunotoxin facilitated by chaperones and protein disulfide isomerase,” Biotechnology, vol. 10, no. 6, pp. 682–685, 1992. View at Publisher · View at Google Scholar
  22. M. H. Hsih, J. C. Kuo, and H. J. Tsai, “Optimization of the solubilization and renaturation of fish growth hormone produced by Escherichia coli,” Applied Microbiology and Biotechnology, vol. 48, no. 1, pp. 66–72, 1997. View at Publisher · View at Google Scholar
  23. D. Arora and N. Khanna, “Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies,” Journal of Biotechnology, vol. 52, no. 2, pp. 127–133, 1996. View at Publisher · View at Google Scholar
  24. A. Rattenholl, H. Lilie, A. Grossmann, A. Stern, E. Schwarz, and R. Rudolph, “The pro-sequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies,” European Journal of Biochemistry, vol. 268, no. 11, pp. 3296–3303, 2001. View at Publisher · View at Google Scholar
  25. S. Bell, S. Hansen, and J. Buchner, “Refolding and structural characterization of the human p53 tumor suppressor protein,” Biophysical Chemistry, vol. 96, no. 2-3, pp. 243–257, 2002. View at Publisher · View at Google Scholar
  26. R. Asano, T. Kudo, K. Makabe, K. Tsumoto, and I. Kumagai, “Antitumor activity of interleukin-21 prepared by novel refolding procedure from inclusion bodies expressed in Escherichia coli,” FEBS Letters, vol. 528, no. 1-3, pp. 70–76, 2002. View at Publisher · View at Google Scholar
  27. H. Oneda and K. Inouye, “Refolding and recovery of recombinant human matrix metalloproteinase 7 (matrilysin) from inclusion bodies expressed by Escherichia coli,” Journal of Biochemistry, vol. 126, no. 5, pp. 905–911, 1999.
  28. D. L. Hevehan and E. D. B. Clark, “Oxidative renaturation of lysozyme at high concentrations,” Biotechnology and Bioengineering, vol. 54, no. 3, pp. 221–230, 1997. View at Publisher · View at Google Scholar
  29. K. Tsumoto, K. Shinoki, H. Kondo, M. Uchikawa, T. Juji, and I. Kumagai, “Highly efficient recovery of functional single-chain Fv fragments from inclusion bodies overexpressed in Escherichia coli by controlled introduction of oxidizing reagent-application to a human single-chain Fv fragment,” Journal of Immunological Methods, vol. 219, no. 1-2, pp. 119–129, 1998. View at Publisher · View at Google Scholar
  30. U. Brinkmann, J. Buchner, and I. Pastan, “Independent domain folding of Pseudomonas exotoxin and single-chain immunotoxins: influence of interdomain connections,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 7, pp. 3075–3079, 1992.
  31. P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero, “Living with water stress: evolution of osmolyte systems,” Science, vol. 217, no. 4566, pp. 1214–1222, 1982.
  32. Y. Xia, Y. D. Park, H. Mu, H. M. Zhou, X. Y. Wang, and F. G. Meng, “The protective effects of osmolytes on arginine kinase unfolding and aggregation,” International Journal of Biological Macromolecules, vol. 40, no. 5, pp. 437–443, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. E. Bajorunaite, A. Cirkovas, K. Radzevicius, K. L. Larsen, J. Sereikaite, and V. A. Bumelis, “Anti-aggregatory effect of cyclodextrins in the refolding process of recombinant growth hormones from Escherichia coli inclusion bodies,” International Journal of Biological Macromolecules, vol. 44, no. 5, pp. 428–434, 2009. View at Publisher · View at Google Scholar · View at PubMed
  34. L. Sharma and A. Sharma, “Influence of cyclodextrin ring substituents on folding-related aggregation of bovine carbonic anhydrase,” European Journal of Biochemistry, vol. 268, no. 8, pp. 2456–2463, 2001. View at Publisher · View at Google Scholar
  35. R. Yazdanparast, M. A. Esmaeili, and F. Khodagholi, “Control of aggregation in protein refolding: cooperative effects of artificial chaperone and cold temperature,” International Journal of Biological Macromolecules, vol. 40, no. 2, pp. 126–133, 2007. View at Publisher · View at Google Scholar · View at PubMed
  36. R. Yazdanparast, F. Khodagholi, and R. Khodarahmi, “Artificial chaperone-assisted refolding of chemically denatured α-amylase,” International Journal of Biological Macromolecules, vol. 35, no. 5, pp. 257–263, 2005. View at Publisher · View at Google Scholar · View at PubMed
  37. L. L. Y. Lee and J. C. Lee, “Thermal stability of proteins in the presence of poly(ethylene glycols),” Biochemistry, vol. 26, no. 24, pp. 7813–7819, 1987.
  38. S. Sato, C. L. Ward, M. E. Krouse, J. J. Wine, and R. R. Kopito, “Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation,” Journal of Biological Chemistry, vol. 271, no. 2, pp. 635–638, 1996. View at Publisher · View at Google Scholar
  39. H. Sawano, Y. Koumoto, K. Ohta, Y. Sasaki, S. I. Segawa, and H. Tachibana, “Efficient in vitro folding of the three-disulfide derivatives of hen lysozyme in the presence of glycerol,” FEBS Letters, vol. 303, no. 1, pp. 11–14, 1992. View at Publisher · View at Google Scholar
  40. J. L. Cleland and D. I. C. Wang, “Cosolvent assisted protein refolding,” Nature Biotechnology, vol. 8, no. 12, pp. 1274–1278, 1990.
  41. A. Kozlowski and J. Milton Harris, “Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C,” Journal of Controlled Release, vol. 72, no. 1-3, pp. 217–224, 2001. View at Publisher · View at Google Scholar
  42. M. J. Roberts, M. D. Bentley, and J. M. Harris, “Chemistry for peptide and protein PEGylation,” Advanced Drug Delivery Reviews, vol. 54, no. 4, pp. 459–476, 2002. View at Publisher · View at Google Scholar
  43. B. Holtz, Y. Wang, X. Y. Zhu, and A. Guo, “Denaturing and refolding of protein molecules on surfaces,” Proteomics, vol. 7, no. 11, pp. 1771–1774, 2007. View at Publisher · View at Google Scholar · View at PubMed
  44. J. L. Cleland, S. E. Builder, J. R. Swartz, M. Winkler, J. Y. Chang, and D. I. C. Wang, “Polyethylene glycol enhanced protein refolding,” Nature Biotechnology, vol. 10, no. 9, pp. 1013–1019, 1992.
  45. J. L. Cleland, C. Hedgepeth, and D. I. Wang, “Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model,” Journal of Biological Chemistry, vol. 267, no. 19, pp. 13327–13334, 1992.
  46. W. Zielenkiewicz, R. Swierzewski, F. Attanasio, and G. Rialdi, “Thermochemical, volumetric and spectroscopic properties of lysozyme-poly(ethylene) glycol system,” Journal of Thermal Analysis and Calorimetry, vol. 83, no. 3, pp. 587–595, 2006. View at Publisher · View at Google Scholar
  47. F. Wang, Y. Liu, J. Li, G. Ma, and Z. Su, “On-column refolding of consensus interferon at high concentration with guanidine-hydrochloride and polyethylene glycol gradients,” Journal of Chromatography A, vol. 1115, no. 1-2, pp. 72–80, 2006. View at Publisher · View at Google Scholar · View at PubMed
  48. F. Rahimpour, G. Mamo, F. Feyzi, S. Maghsoudi, and R. Hatti-Kaul, “Optimizing refolding and recovery of active recombinant Bacillus halodurans xylanase in polymer-salt aqueous two-phase system using surface response analysis,” Journal of Chromatography A, vol. 1141, no. 1, pp. 32–40, 2007. View at Publisher · View at Google Scholar · View at PubMed
  49. R. A. Hart, P. M. Lester, D. H. Reifsnyder, J. R. Ogez, and S. E. Builder, “Large scale, in situ isolation of periplasmic IGF-I from E. coli,” Nature Biotechnology, vol. 12, no. 11, pp. 1113–1117, 1994.
  50. D. Samuel, T. K. S. Kumar, G. Ganesh et al., “Proline inhibits aggregation during protein refolding,” Protein Science, vol. 9, no. 2, pp. 344–352, 2000.
  51. S. H. Kim, Y. B. Yan, and H. M. Zhou, “Role of osmolytes as chemical chaperones during the refolding of aminoacylase,” Biochemistry and Cell Biology, vol. 84, no. 1, pp. 30–38, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. F. G. Meng, Y. D. Park, and H. M. Zhou, “Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 7, pp. 701–709, 2001. View at Publisher · View at Google Scholar
  53. A. S. Rudolph and J. H. Crowe, “Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline,” Cryobiology, vol. 22, no. 4, pp. 367–377, 1985.
  54. B. Schobert and H. Tschesche, “Unusual solution properties of proline and its interaction with proteins,” Biochimica et Biophysica Acta, vol. 541, no. 2, pp. 270–277, 1978.
  55. C. Tanford, Physical Chemistry of Macromolecules, John Wiley & Sons, New York, NY, USA, 1961.
  56. T. Arakawa and S. N. Timasheff, “Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding,” Biochemistry, vol. 23, no. 25, pp. 5912–5923, 1984.
  57. N. L. Jarvis and M. A. Scheiman, “Surface potentials of aqueous electrolyte solutions,” Journal of Physical Chemistry, vol. 72, no. 1, pp. 74–78, 1968.
  58. A. Hirano, H. Hamada, T. Okubo, T. Noguchi, H. Higashibata, and K. Shiraki, “Correlation between thermal aggregation and stability of lysozyme with salts described by molar surface tension increment: an exceptional propensity of ammonium salts as aggregation suppressor,” Protein Journal, vol. 26, no. 6, pp. 423–433, 2007. View at Publisher · View at Google Scholar · View at PubMed
  59. W. Richter, T. Hermsdorf, T. Kronbach, and D. Dettmer, “Refolding and purification of recombinant human PDE7A expressed in Escherichia coli as inclusion bodies,” Protein Expression and Purification, vol. 25, no. 1, pp. 138–148, 2002. View at Publisher · View at Google Scholar · View at PubMed
  60. D. W. Bolen and I. V. Baskakov, “The osmophobic effect: natural selection of a thermodynamic force in protein folding,” Journal of Molecular Biology, vol. 310, no. 5, pp. 955–963, 2001. View at Publisher · View at Google Scholar · View at PubMed
  61. T. Kamiyama, Y. Sadahide, Y. Nogusa, and K. Gekko, “Polyol-induced molten globule of cytochrome C: an evidence for stabilization by hydrophobic interaction,” Biochimica et Biophysica Acta, vol. 14, pp. 44–57, 1999.
  62. S. N. Timasheff, “Protein hydration, thermodynamic binding, and preferential hydration,” Biochemistry, vol. 41, no. 46, pp. 13473–13482, 2002. View at Publisher · View at Google Scholar
  63. K. Gekko and T. Morikawa, “Thermodynamics of polyol-induced thermal stabilization of chymotrypsinogen,” Journal of Biochemistry, vol. 90, no. 1, pp. 51–60, 1981.
  64. K. Gekko and S. N. Timasheff, “Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures,” Biochemistry, vol. 20, no. 16, pp. 4667–4676, 1981.
  65. S. Jain and J. C. Ahluwalia, “Synergetic effect of polyols with tetrabutylammonium bromide and urea on the thermal stability of lysozyme,” Thermochimica Acta, vol. 302, no. 1-2, pp. 17–24, 1997.
  66. A. Cao, G. Wang, Y. Tang, and L. Lai, “Linear correlation between thermal stability and folding kinetics of lysozyme,” Biochemical and Biophysical Research Communications, vol. 291, no. 4, pp. 795–797, 2002. View at Publisher · View at Google Scholar · View at PubMed
  67. A. Majumder, S. Basak, T. Raha, S. P. Chowdhury, D. Chattopadhyay, and S. Roy, “Effect of osmolytes and chaperone-like action of P-protein on folding of nucleocapsid protein of chandipura virus,” Journal of Biological Chemistry, vol. 276, no. 33, pp. 30948–30955, 2001. View at Publisher · View at Google Scholar · View at PubMed
  68. R. Mishra, R. Seckler, and R. Bhat, “Efficient refolding of aggregation-prone citrate synthase by polyol osmolytes: how well are protein folding and stability aspects coupled?” Journal of Biological Chemistry, vol. 280, no. 16, pp. 15553–15560, 2005. View at Publisher · View at Google Scholar · View at PubMed
  69. I. Roy and M. N. Gupta, “pH-responsive polymer-assisted refolding of urea- and organic solvent-denatured α-chymotrypsin,” Protein Engineering, vol. 16, no. 12, pp. 1153–1157, 2003.
  70. I. Roy, K. Mondal, A. Sharma, and M. N. Gupta, “Simultaneous refolding/purification of xylanase with a microwave treated smart polymer,” Biochimica et Biophysica Acta, vol. 1747, no. 2, pp. 179–187, 2005. View at Publisher · View at Google Scholar · View at PubMed