About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2011 (2011), Article ID 901572, 7 pages
http://dx.doi.org/10.1155/2011/901572
Research Article

Hsp27-Actin Interaction

Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA

Received 29 April 2011; Accepted 11 July 2011

Academic Editor: Stefano Gianni

Copyright © 2011 Philip Graceffa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Van Montfort, C. Slingsby, and E. Vierling, “Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones,” Advances in Protein Chemistry, vol. 59, pp. 105–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Mounier and A. P. Arrigo, “Actin cytoskeleton and small heat shock proteins: how do they interact?” Cell Stress and Chaperones, vol. 7, no. 2, pp. 167–176, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. N. B. Gusev, N. V. Bogatcheva, and S. B. Marston, “Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins,” Biochemistry (Moscow), vol. 67, no. 5, pp. 511–519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Hayes, V. Napoli, A. Mazurkie, W. F. Stafford, and P. Graceffa, “Phosphorylation dependence of Hsp27 multimeric size and molecular chaperone function,” Journal of Biological Chemistry, vol. 284, no. 28, pp. 18801–18807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Welsh and M. Gaestel, “Small heat-shock protein family: function in health and disease,” Annals of the New York Academy of Sciences, vol. 851, pp. 28–35, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. J. I. Clark and P. J. Muchowski, “Small heat-shock proteins and their potential role in human disease,” Current Opinion in Structural Biology, vol. 10, no. 1, pp. 52–59, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Sun and T. H. MacRae, “The small heat shock proteins and their role in human disease,” FEBS Journal, vol. 272, no. 11, pp. 2613–2627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Haslbeck, T. Franzmann, D. Weinfurtner, and J. Buchner, “Some like it hot: the structure and function of small heat-shock proteins,” Nature Structural and Molecular Biology, vol. 12, no. 10, pp. 842–846, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. P. Arrigo, S. Simon, B. Gibert et al., “Hsp27 (HspB1) and αB-crystallin (HspB5) as therapeutic targets,” FEBS Letters, vol. 581, no. 19, pp. 3665–3674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell, vol. 112, no. 4, pp. 453–465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. N. Lavoie, G. Gingras-Breton, R. M. Tanguay, and J. Landry, “Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization,” Journal of Biological Chemistry, vol. 268, no. 5, pp. 3420–3429, 1993. View at Scopus
  12. J. N. Lavoie, E. Hickey, L. A. Weber, and J. Landry, “Modulation of actin-microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27,” Journal of Biological Chemistry, vol. 268, no. 32, pp. 24210–24214, 1993. View at Scopus
  13. Y. Zhu, S. O'Neill, J. Saklatvala, L. Tassi, and M. E. Mendelsohn, “Phosphorylated HSP27 associates with the activation-dependent cytoskeleton in human platelets,” Blood, vol. 84, no. 11, pp. 3715–3723, 1994. View at Scopus
  14. J. N. Lavoie, H. Lambert, E. Hickey, L. A. Weber, and J. Landry, “Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27,” Molecular and Cellular Biology, vol. 15, no. 1, pp. 505–516, 1995. View at Scopus
  15. J. Huot, F. Houle, D. R. Spitz, and J. Landry, “HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress,” Cancer Research, vol. 56, no. 2, pp. 273–279, 1996. View at Scopus
  16. J. Huot, F. Houle, F. Marceau, and J. Landry, “Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells,” Circulation Research, vol. 80, no. 3, pp. 383–392, 1997. View at Scopus
  17. J. Guay, H. Lambert, G. Gingras-Breton, J. N. Lavoie, J. Huot, and J. Landry, “Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27,” Journal of Cell Science, vol. 110, no. 3, pp. 357–368, 1997. View at Scopus
  18. S. Rousseau, F. Houle, J. Landry, and J. Huot, “P38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells,” Oncogene, vol. 15, no. 18, pp. 2169–2177, 1997. View at Scopus
  19. G. B. Schneider, H. Hamano, and L. F. Cooper, “In vivo evaluation of hsp27 as an inhibitor of actin polymerization: Hsp27 limits actin stress fiber and focal adhesion formation after heat shock,” Journal of Cellular Physiology, vol. 177, no. 4, pp. 575–584, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. A. I. Ibitayo, J. Sladick, S. Tuteja et al., “HSP27 in signal transduction and association with contractile proteins in smooth muscle cells,” American Journal of Physiology, vol. 277, no. 2, pp. G445–G454, 1999. View at Scopus
  21. C. Schäfer, P. Clapp, M. J. Welsh, R. Benndorf, and J. A. Williams, “HSP27 expression regulates CCK-induced changes of the actin cytoskeleton in CHO-CCK-A cells,” American Journal of Physiology, vol. 277, no. 6, pp. C1032–C1043, 1999. View at Scopus
  22. S. K. Van Why, A. S. Mann, T. Ardito et al., “Hsp27 associates with actin and limits injury in energy depleted renal epithelia,” Journal of the American Society of Nephrology, vol. 14, no. 1, pp. 98–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Pichon, M. Bryckaert, and E. Berrou, “Control of actin dynamics by p38 MAP kinase—Hsp27 distribution in the lamellipodium of smooth muscle cells,” Journal of Cell Science, vol. 117, no. 12, pp. 2569–2577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. L. During, B. G. Gibson, W. Li et al., “Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation,” EMBO Journal, vol. 26, no. 9, pp. 2240–2250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. B. M. Doshi, L. E. Hightower, and J. Lee, “The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock,” Cell Stress and Chaperones, vol. 14, no. 5, pp. 445–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Miron, M. Wilchek, and B. Geiger, “Characterization of an inhibitor of actin polymerization in vinculin-rich fraction of turkey gizzard smooth muscle,” European Journal of Biochemistry, vol. 178, no. 2, pp. 543–553, 1988. View at Scopus
  27. B. Lelj-Garolla and A. G. Mauk, “Self-association of a small heat shock protein,” Journal of Molecular Biology, vol. 345, no. 3, pp. 631–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. H. E. White, E. V. Orlova, S. Chen et al., “Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26,” Structure, vol. 14, no. 7, pp. 1197–1204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. D. Pardee, “Purification of muscle actin,” Methods in Enzymology, vol. 85, pp. 164–181, 1982. View at Publisher · View at Google Scholar
  30. T. W. Houk and K. and Ue, “The measurement of actin concentration in solution: a comparison of methods,” Analytical Biochemistry, vol. 62, no. 1, pp. 66–74, 1974. View at Scopus
  31. M. P. Bova, H. S. Mchaourab, Y. Han, and B. K. K. Fung, “Subunit exchange of small heat shock proteins. Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations,” Journal of Biological Chemistry, vol. 275, no. 2, pp. 1035–1042, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. P. K. Smith, R. I. Krohn, and G. T. Hermanson, “Measurement of protein using bicinchoninic acid,” Analytical Biochemistry, vol. 150, no. 1, pp. 76–85, 1985.
  33. F. G. Prendergast, M. Meyer, G. L. Carlson, S. Iida, and J. D. Potter, “Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe,” Journal of Biological Chemistry, vol. 258, no. 12, pp. 7541–7544, 1983. View at Scopus
  34. T. Kouyama and K. Mihashi, “Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin,” European Journal of Biochemistry, vol. 114, no. 1, pp. 33–38, 1981. View at Scopus
  35. E. P. Morris and S. S. Lehrer, “Troponin-tropomyosin interactions. Fluorescence studies of the binding of troponin, troponin T, and chymotryptic troponin T fragments to specifically labeled tropomyosin,” Biochemistry, vol. 23, no. 10, pp. 2214–2220, 1984. View at Scopus
  36. C. L. Drum, S. Z. Yan, R. Sarac et al., “An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 36334–36340, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. W. F. Stafford III, “Boundary analysis in sedimentation velocity experiments,” Methods in Enzymology, vol. 240, pp. 478–501, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Xu, J. F. Casella, and T. D. Pollard, “Effect of capping protein, CapZ, on the length of actin filaments and mechanical properties of actin filament networks,” Cell Motility and the Cytoskeleton, vol. 42, no. 1, pp. 73–81, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. S. S. Lehrer, “Pyrene excimer fluorescence as a probe of protein conformational change,” Sub-cellular biochemistry, vol. 24, pp. 115–132, 1995. View at Scopus
  40. S. S. Lehrer, “Intramolecular pyrene excimer fluorescence: a probe of proximity and protein conformational change,” Methods in Enzymology, vol. 278, pp. 286–295, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. A. R. Berengian, M. Parfenova, and H. S. McHaourab, “Site-directed spin labeling study of subunit interactions in the α- crystallin domain of small heat-shock proteins. Comparison of the oligomer symmetry in αA-crystallin, HSP 27, and HSP 16.3,” Journal of Biological Chemistry, vol. 274, no. 10, pp. 6305–6314, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. H. S. Mchaourab, A. R. Berengian, and H. A. Koteiche, “Site-directed spin-labeling study of the structure and subunit interactions along a conserved sequence in the α-crystallin domain of heat- shock protein 27. Evidence of a conserved subunit interface,” Biochemistry, vol. 36, no. 48, pp. 14627–14634, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Zavialov, R. Benndorf, M. Ehrnsperger et al., “The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp25,” International Journal of Biological Macromolecules, vol. 22, no. 3-4, pp. 163–173, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. A. V. Zavialov, M. Gaestel, T. Korpela, and V. P. Zav'Yalov, “Thiol/disulfide exchange between small heat shock protein 25 and glutathione,” Biochimica et Biophysica Acta, vol. 1388, no. 1, pp. 123–132, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Benndorf, K. Hayess, S. Ryazantsev, M. Wieske, J. Behlke, and G. Lutsch, “Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity,” Journal of Biological Chemistry, vol. 269, no. 32, pp. 20780–20784, 1994. View at Scopus
  46. C. Le Clainche, S. P. Dwivedi, D. Didry, and M. F. Carlier, “Vinculin is a dually regulated actin filament barbed end-capping and side-binding protein,” Journal of Biological Chemistry, vol. 285, no. 30, pp. 23420–23432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Wang, R. C. Robinson, and L. D. Burtnick, “The structure of native G-actin,” Cytoskeleton, vol. 67, no. 7, pp. 456–465, 2010. View at Publisher · View at Google Scholar · View at Scopus