About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2012 (2012), Article ID 245786, 12 pages
http://dx.doi.org/10.1155/2012/245786
Review Article

Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain

Received 4 June 2012; Revised 27 July 2012; Accepted 30 July 2012

Academic Editor: Vladimir Uversky

Copyright © 2012 Elena García-Giménez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Parsegian, “Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems,” Nature, vol. 221, no. 5183, pp. 844–846, 1969. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, Mass, USA, 2001.
  3. D. J. Aidley and P. R. Stanfield, Ion Channels: Molecules in Action, Cambridge University Press, New York, NY, USA, 1996.
  4. F. Ashcroft, D. Benos, F. Bezanilla, et al., “The state of ion channel research in 2004,” Nature Reviews Drug Discovery, vol. 3, no. 3, pp. 239–278, 2004.
  5. B. Corry, “Understanding ion channel selectivity and gating and their role in cellular signalling,” Molecular Biosystems, vol. 2, no. 11, pp. 527–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. V. M. Aguilella, M. Queralt-Martín, M. Aguilella-Arzo, and A. Alcaraz, “Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity,” Integrative Biology, vol. 3, no. 3, pp. 159–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Bayley and P. S. Cremer, “Stochastic sensors inspired by biology,” Nature, vol. 413, no. 6852, pp. 226–230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. V. M. Aguilella and A. Alcaraz, “Nanobiotechnology: a fluid approach to simple circuits,” Nature Nanotechnology, vol. 4, no. 7, pp. 403–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Maglia, A. J. Heron, W. L. Hwang et al., “Droplet networks with incorporated protein diodes show collective properties,” Nature Nanotechnology, vol. 4, no. 7, pp. 437–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. B. Laughlin, R. R. de Ruyter van Steveninck, and J. C. Anderson, “The metabolic cost of neural information,” Nature Neuroscience, vol. 1, no. 1, pp. 36–41, 1998. View at Scopus
  11. D. P. Tieleman, P. C. Biggin, G. R. Smith, and M. S. P. Sansom, “Simulation approaches to ion channel structure-function relationships,” Quarterly Reviews of Biophysics, vol. 34, no. 4, pp. 473–561, 2001. View at Scopus
  12. B. Roux, T. Allen, S. Bernèche, and W. Im, “Theoretical and computational models of biological ion channels,” Quarterly Reviews of Biophysics, vol. 37, no. 1, pp. 15–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Alcaraz, E. M. Nestorovich, M. L. López, E. García-Giménez, S. M. Bezrukov, and V. M. Aguilella, “Diffusion, exclusion, and specific binding in a large channel: a study of OmpF selectivity inversion,” Biophysical Journal, vol. 96, no. 1, pp. 56–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. García-Giménez, A. Alcaraz, and V. M. Aguilella, “Overcharging below the nanoscale: multivalent cations reverse the ion selectivity of a biological channel,” Physical Review E, vol. 81, no. 2, Article ID 021912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. W. Cowan, R. M. Garavito, J. N. Jansonius et al., “The structure of OmpF porin in a tetragonal crystal form,” Structure, vol. 3, no. 10, pp. 1041–1050, 1995. View at Scopus
  16. A. H. Delcour, “Solute uptake through general porins,” Frontiers in Bioscience, vol. 8, pp. d1055–d1071, 2003. View at Scopus
  17. H. Nikaido, “Molecular basis of bacterial outer membrane permeability revisited,” Microbiology and Molecular Biology Reviews, vol. 67, no. 4, pp. 593–656, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Colombini, E. Blachly-Dyson, and M. Forte, “VDAC, a channel in the outer mitochondrial membrane,” Ion Channels, vol. 4, pp. 169–202, 1996. View at Scopus
  19. E. Gouaux, “α-Hemolysin from Staphylococcus aureus: an archetype of β-barrel, channel-forming toxins,” Journal of Structural Biology, vol. 121, no. 2, pp. 110–122, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux, “Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore,” Science, vol. 274, no. 5294, pp. 1859–1866, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. V. M. Aguilella and S. M. Bezrukov, “Alamethicin channel conductance modified by lipid charge,” European Biophysics Journal, vol. 30, no. 4, pp. 233–241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. D. S. Cafiso, “Alamethicin: a peptide model for voltage gating and protein-membrane interactions,” Annual Review of Biophysics and Biomolecular Structure, vol. 23, pp. 141–165, 1994. View at Scopus
  23. J. E. Hall, I. Vodyanoy, T. M. Balasubramanian, and G. R. Marshall, “Alamethicin. A rich model for channel behavior,” Biophysical Journal, vol. 45, no. 1, pp. 233–247, 1984. View at Scopus
  24. M. Colombini, “VDAC: the channel at the interface between mitochondria and the cytosol,” Molecular and Cellular Biochemistry, vol. 256-257, no. 1-2, pp. 107–115, 2004. View at Scopus
  25. E. M. Nestorovich, C. Danelon, M. Winterhalter, and S. M. Bezrukov, “Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9789–9794, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Prilipov, P. S. Phale, P. Van Gelder, J. P. Rosenbusch, and R. Koebnik, “Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli,” FEMS Microbiology Letters, vol. 163, no. 1, pp. 65–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Pauptit, H. Zhang, G. Rummel, T. Schirmer, J. N. Jansonius, and J. P. Rosenbusch, “Trigonal crystals of porin from Escherichia coli,” Journal of Molecular Biology, vol. 218, no. 3, pp. 505–507, 1991. View at Scopus
  28. W. Im and B. Roux, “Ions and counterions in a biological channel: a molecular dynamics simulation of ompf porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution,” Journal of Molecular Biology, vol. 319, no. 5, pp. 1177–1197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Alcaraz, E. M. Nestorovich, M. Aguilella-Arzo, V. M. Aguilella, and S. M. Bezrukov, “Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF,” Biophysical Journal, vol. 87, no. 2, pp. 943–957, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Aguilella-Arzo, J. J. García-Celma, J. Cervera, A. Alcaraz, and V. M. Aguilella, “Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mutants,” Bioelectrochemistry, vol. 70, no. 2, pp. 320–327, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. P. Tieleman and H. J. C. Berendsen, “A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer,” Biophysical Journal, vol. 74, no. 6, pp. 2786–2801, 1998. View at Scopus
  32. T. Schirmer and P. S. Phale, “Brownian dynamics simulation of ion flow through porin channels,” Journal of Molecular Biology, vol. 294, no. 5, pp. 1159–1167, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. P. S. Phale, A. Philippsen, C. Widmer, V. P. Phale, J. P. Rosenbusch, and T. Schirmer, “Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation,” Biochemistry, vol. 40, no. 21, pp. 6319–6325, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Im and B. Roux, “Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory,” Journal of Molecular Biology, vol. 322, no. 4, pp. 851–869, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Chimerel, L. Movileanu, S. Pezeshki, M. Winterhalter, and U. Kleinekathöfer, “Transport at the nanoscale: temperature dependence of ion conductance,” European Biophysics Journal, vol. 38, no. 1, pp. 121–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Faraudo, C. Calero, and M. Aguilella-Arzo, “Ionic partition and transport in multi-ionic channels: a molecular dynamics simulation study of the OmpF bacterial porin,” Biophysical Journal, vol. 99, no. 7, pp. 2107–2115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Dhakshnamoorthy, S. Raychaudhury, L. Blachowicz, and B. Roux, “Cation-selective pathway of OmpF porin revealed by anomalous X-ray diffraction,” Journal of Molecular Biology, vol. 396, no. 2, pp. 293–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Yamashita, M. V. Zhalnina, S. D. Zakharov, O. Sharma, and W. A. Cramer, “Crystal structures of the OmpF porin: function in a colicin translocon,” EMBO Journal, vol. 27, no. 15, pp. 2171–2180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. K. L. Lout, N. Saint, A. Prilipov et al., “Structural and functional characterization of OmpF porin mutants selected for larger pore size. I. Crystallographic analysis,” Journal of Biological Chemistry, vol. 271, no. 34, pp. 20669–20675, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. I. R. Vetter, M. W. Parker, A. D. Tucker, J. H. Lakey, F. Pattus, and D. Tsernoglou, “Crystal structure of a colicin N fragment suggests a model for toxicity,” Structure, vol. 6, no. 7, pp. 863–874, 1998. View at Scopus
  41. P. S. Phale, A. Philippsen, T. Kiefhaber et al., “Stability of trimeric OmpF porin: the contributions of the latching loop L2,” Biochemistry, vol. 37, no. 45, pp. 15663–15670, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Dutzler, G. Rummel, S. Alberti et al., “Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae,” Structure, vol. 7, no. 4, pp. 425–434, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Reitz, M. Cebi, P. Reiß et al., “On the function and structure of synthetically modified porins,” Angewandte Chemie, vol. 48, no. 26, pp. 4853–4857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Kefala, C. Ahn, M. Krupa et al., “Structures of the OmpF porin crystallized in the presence of foscholine-12,” Protein Science, vol. 19, no. 5, pp. 1117–1125, 2010. View at Scopus
  45. N. G. Housden, J. A. Wojdyla, J. Korczynska et al., “Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21412–21417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. M. L. López, M. Aguilella-Arzo, V. M. Aguilella, and A. Alcaraz, “Ion selectivity of a biological channel at high concentration ratio: insights on small ion diffusion and binding,” Journal of Physical Chemistry B, vol. 113, no. 25, pp. 8745–8751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. L. López, E. García-Giménez, V. M. Aguilella, and A. Alcaraz, “Critical assessment of OmpF channel selectivity: merging information from different experimental protocols,” Journal of Physics Condensed Matter, vol. 22, no. 45, Article ID 454106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Mueller, D. O. Rudin, H. T. Tien, and W. C. Wescott, “Reconstitution of excitable cell membrane structure in vitro,” Circulation, vol. 26, pp. 1167–1171, 1962. View at Publisher · View at Google Scholar
  49. M. Montal and P. Mueller, “Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 12, pp. 3561–3566, 1972. View at Scopus
  50. S. M. Beznukov and I. Vodyanoy, “Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states,” Biophysical Journal, vol. 64, no. 1, pp. 16–25, 1993. View at Scopus
  51. E. Neher, “Correction for liquid junction potentials in patch clamp experiments,” Methods in Enzymology, vol. 207, pp. 123–131, 1992. View at Scopus
  52. P. H. Barry and J. M. Diamond, “Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes,” Journal of Membrane Biology, vol. 3, no. 1, pp. 93–122, 1970. View at Publisher · View at Google Scholar · View at Scopus
  53. P. H. Barry and J. W. Lynch, “Liquid junction potentials and small cell effects in patch-clamp analysis,” Journal of Membrane Biology, vol. 121, no. 2, pp. 101–117, 1991. View at Scopus
  54. C. Danelon, A. Suenaga, M. Winterhalter, and I. Yamato, “Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation,” Biophysical Chemistry, vol. 104, no. 3, pp. 591–603, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Miedema, A. Meter-Arkema, J. Wierenga et al., “Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels,” Biophysical Journal, vol. 87, no. 5, pp. 3137–3147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Saint, K. L. Lou, C. Widmer, M. Luckey, T. Schirmer, and J. P. Rosenbusch, “Structural and functional characterization of OmpF porin mutants selected for larger pore size. II. Functional characterization,” Journal of Biological Chemistry, vol. 271, no. 34, pp. 20676–20680, 1996. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Vrouenraets, J. Wierenga, W. Meijberg, and H. Miedema, “Chemical modification of the bacterial porin OmpF: gain of selectivity by volume reduction,” Biophysical Journal, vol. 90, no. 4, pp. 1202–1211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. D. A. MacInnes, The Principles of Electrochemistry, Dover Publications, New York, NY, USA, 1961.
  59. J. W. Perram and P. J. Stiles, “On the nature of liquid junction and membrane potentials,” Physical Chemistry Chemical Physics, vol. 8, no. 36, pp. 4200–4213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Sokalski, P. Lingelfelter, and A. Lewenstam, “Numerical solution of the coupled Nernst-Planck and Poisson equations for liquid junction and ion selective membrane potentials,” Journal of Physical Chemistry B, vol. 107, no. 11, pp. 2443–2452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. H. W. Harper, “Calculation of liquid junction potentials,” Journal of Physical Chemistry, vol. 89, no. 9, pp. 1659–1664, 1985. View at Scopus
  62. J. D. Madura, J. M. Briggs, R. C. Wade et al., “Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program,” Computer Physics Communications, vol. 91, no. 1–3, pp. 57–95, 1995. View at Scopus
  63. R. Benz, A. Schmid, and R. E. W. Hancock, “Ion selectivity of gram-negative bacterial porins,” Journal of Bacteriology, vol. 162, no. 2, pp. 722–727, 1985. View at Scopus
  64. D. Gillespie and R. S. Eisenberg, “Physical descriptions of experimental selectivity measurements in ion channels,” European Biophysics Journal, vol. 31, no. 6, pp. 454–466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. E. M. Nestorovich, T. K. Rostovtseva, and S. M. Bezrukov, “Residue ionization and ion transport through OmpF channels,” Biophysical Journal, vol. 85, no. 6, pp. 3718–3729, 2003. View at Scopus
  66. A. Alcaraz, P. Ramírez, E. García-Giménez, M. L. López, A. Andrio, and V. M. Aguilella, “A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel,” Journal of Physical Chemistry B, vol. 110, no. 42, pp. 21205–21209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Queralt-Martín, E. García-Giménez, S. Mafé, and A. Alcaraz, “Divalent cations reduce the pH sensitivity of OmpF channel inducing the pK(a) shift of key acidic residues,” Physical Chemistry Chemical Physics, vol. 13, no. 2, pp. 563–569, 2011. View at Scopus
  68. J. Lyklema, “Overcharging, charge reversal: chemistry or physics?” Colloids and Surfaces A, vol. 291, no. 1–3, pp. 3–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Miedema, M. Vrouenraets, J. Wierenga et al., “Ca2+ selectivity of a chemically modified OmpF with reduced pore volume,” Biophysical Journal, vol. 91, no. 12, pp. 4392–4400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Aguilella-Arzo, C. Calero, and J. Faraudo, “Simulation of electrokinetics at the nanoscale: inversion of selectivity in a bio-nanochannel,” Soft Matter, vol. 6, no. 24, pp. 6079–6082, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Faraudo and A. Travesset, “The many origins of charge inversion in electrolyte solutions: effects of discrete interfacial charges,” Journal of Physical Chemistry C, vol. 111, no. 2, pp. 987–994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Helfferich, Ion Exchange, McGraw-Hill, New York, NY, USA, 1962.
  73. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Dover Publications, New York, NY, USA, 2002.
  74. V. M. M. Lobo and J. L. Quaresma, Handbook of Electrolyte Solutions, Elsevier, Amsterdam, The Netherlands, 1989.
  75. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions, Reinhold Publishing, New York, NY, USA, 1967.
  76. E. García-Giménez, A. Alcaraz, V. M. Aguilella, and P. Ramírez, “Directional ion selectivity in a biological nanopore with bipolar structure,” Journal of Membrane Science, vol. 331, no. 1-2, pp. 137–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. E. García-Giménez, M. L. López, V. M. Aguilella, and A. Alcaraz, “Linearity, saturation and blocking in a large multiionic channel: divalent cation modulation of the OmpF porin conductance,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 330–334, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Fologea, E. Krueger, R. Al Faori et al., “Multivalent ions control the transport through lysenin channels,” Biophysical Chemistry, vol. 152, no. 1–3, pp. 40–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. T. H. Hohle, W. L. Franck, G. Stacey, and M. R. O'Brian, “Bacterial outer membrane channel for divalent metal ion acquisition,” Proceedings of the Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15390–15395, 2011.
  80. A. J. H. Marshall and L. J. V. Piddock, “Interaction of divalent cations, quinolones and bacteria,” Journal of Antimicrobial Chemotherapy, vol. 34, no. 4, pp. 465–483, 1994. View at Scopus
  81. P. R. Singh, M. Ceccarelli, M. Lovelle, M. Winterhalter, and K. R. Mahendran, “Antibiotic permeation across the OmpF channel: modulation of the affinity site in the presence of magnesium,” Journal of Physical Chemistry B, vol. 116, no. 15, pp. 4433–4438, 2012.
  82. A. Brauser, I. Schroeder, T. Gutsmann et al., “Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current,” The Journal of General Physiology, vol. 140, no. 1, pp. 69–82, 2012. View at Publisher · View at Google Scholar
  83. D. Fologea, R. Al Faori, E. Krueger et al., “Potential analytical applications of lysenin channels for detection of multivalent ions,” Analytical and Bioanalytical Chemistry, vol. 401, no. 6, pp. 1871–1879, 2011. View at Publisher · View at Google Scholar · View at Scopus