About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2012 (2012), Article ID 282648, 8 pages
http://dx.doi.org/10.1155/2012/282648
Research Article

The Role of the Cullin-5 E3 Ubiquitin Ligase in the Regulation of Insulin Receptor Substrate-1

1Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
2Institute of Metabolic Science, Metabolic Research Laboratories, and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB20QQ, UK

Received 17 July 2012; Revised 2 November 2012; Accepted 11 November 2012

Academic Editor: Emil Pai

Copyright © 2012 Christine Zhiwen Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Banks, J. Li, L. McKeag et al., “Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans,” Journal of Clinical Investigation, vol. 115, no. 9, pp. 2462–2471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Emanuelli, P. Peraldi, C. Filloux, D. Sawka-Verhelle, D. Hilton, and E. Van Obberghen, “SOCS-3 is an insulin-induced negative regulator of insulin signaling,” The Journal of Biological Chemistry, vol. 275, no. 21, pp. 15985–15991, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Hilton, R. T. Richardson, W. S. Alexander et al., “Twenty proteins containing a C-terminal SOCS box form five structural classes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 1, pp. 114–119, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Babon, J. K. Sabo, J. G. Zhang, N. A. Nicola, and R. S. Norton, “The SOCS box encodes a hierarchy of affinities for Cullin5: implications for ubiquitin ligase formation and cytokine signalling suppression,” Journal of Molecular Biology, vol. 387, no. 1, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ohh, C. W. Park, M. Ivan et al., “Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein,” Nature Cell Biology, vol. 2, no. 7, pp. 423–427, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Kibel, O. Iliopoulos, J. A. DeCaprio, and W. G. Kaelin, “Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C,” Science, vol. 269, no. 5229, pp. 1444–1446, 1995. View at Scopus
  7. T. Aso, D. Haque, R. J. Barstead, R. C. Conaway, and J. W. Conaway, “The inducible elongin A elongation activation domain: structure, function and interaction with the elongin BC complex,” EMBO Journal, vol. 15, no. 20, pp. 5557–5566, 1996. View at Scopus
  8. T. Kamura, S. Sato, D. Haque et al., “The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families,” Genes and Development, vol. 12, no. 24, pp. 3872–3881, 1998. View at Scopus
  9. J. G. Zhang, A. Farley, S. E. Nicholson et al., “The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2071–2076, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kamura, K. Maenaka, S. Kotoshiba et al., “VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases,” Genes and Development, vol. 18, no. 24, pp. 3055–3065, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Rui, M. Yuan, D. Frantz, S. Shoelson, and M. F. White, “SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2,” The Journal of Biological Chemistry, vol. 277, no. 44, pp. 42394–42398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. T. A. Soucy, P. G. Smith, M. A. Milhollen et al., “An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer,” Nature, vol. 458, no. 7239, pp. 732–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Brownell, M. D. Sintchak, J. M. Gavin et al., “Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ,” Molecular Cell, vol. 37, no. 1, pp. 102–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Lee and P. Zhou, “Cullins and cancer,” Genes and Cancer, vol. 1, no. 7, pp. 690–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Finlay, A. J. Ruiz-Alcaraz, C. Lipina, S. Perrier, and C. D. Sutherland, “A temporal switch in the insulin-signalling pathway that regulates hepatic IGF-binding protein-1 gene expression,” Journal of Molecular Endocrinology, vol. 37, no. 2, pp. 227–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Zhande, J. J. Mitchell, J. Wu, and X. J. Sun, “Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1,” Molecular and Cellular Biology, vol. 22, no. 4, pp. 1016–1026, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Briaud, L. M. Dickson, M. K. Lingohr, J. F. McCuaig, J. C. Lawrence, and C. J. Rhodes, “Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in β-cells,” The Journal of Biological Chemistry, vol. 280, no. 3, pp. 2282–2293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Bouché, F. Zappelli, M. Polimeni et al., “Rapid activation and down-regulation of protein kinase C α in 12-O-tetradecanoylphorbol-13-acetate-induced differentiation of human rhabdomyosarcoma cells,” Cell Growth and Differentiation, vol. 6, no. 7, pp. 845–852, 1995. View at Scopus
  19. R. Nawaratne, A. Gray, C. H. Jørgensen, C. P. Downes, K. Siddle, and J. K. Sethi, “Regulation of insulin receptor substrate 1 pleckstrin homology domain by protein kinase C: role of serine 24 phosphorylation,” Molecular Endocrinology, vol. 20, no. 8, pp. 1838–1852, 2006. View at Publisher · View at Google Scholar · View at Scopus