About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2012 (2012), Article ID 371415, 12 pages
http://dx.doi.org/10.1155/2012/371415
Research Article

Length and PKA Dependence of Force Generation and Loaded Shortening in Porcine Cardiac Myocytes

1Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
2Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA

Received 20 February 2012; Accepted 1 May 2012

Academic Editor: John Konhilas

Copyright © 2012 Kerry S. McDonald et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fabiato and F. Fabiato, “Dependence of the contractile activation of skinned cardiac cells on the sarcomere length,” Nature, vol. 256, no. 5512, pp. 54–56, 1975. View at Publisher · View at Google Scholar · View at Scopus
  2. G. H. Rossmanith, J. F. Y. Hoh, A. Kirman, and L. J. Kwan, “Influence of V1 and V3 isomyosins on the mechanical behaviour of rat papillary muscle as studied by pseudo-random binary noise modulated length perturbations,” Journal of Muscle Research and Cell Motility, vol. 7, no. 4, pp. 307–319, 1986. View at Publisher · View at Google Scholar · View at Scopus
  3. P. P. De Tombe and H. E. D. J. Ter Keurs, “Force and velocity of sarcomere shortening in trabeculae from rat heart. Effects of temperature,” Circulation Research, vol. 66, no. 5, pp. 1239–1254, 1990. View at Scopus
  4. N. K. Sweitzer and R. L. Moss, “The effect of altered temperature on Ca2+-sensitive force in permeabilized myocardium and skeletal muscle. Evidence for force dependence of thin filament activation,” Journal of General Physiology, vol. 96, no. 6, pp. 1221–1245, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Puceat, O. Clement, P. Lechene, J. M. Pelosin, R. Ventura-Clapier, and G. Vassort, “Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells,” Circulation Research, vol. 67, no. 2, pp. 517–524, 1990. View at Scopus
  6. K. T. Strang, N. K. Sweitzer, M. L. Greaser, and R. L. Moss, “β-Adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats,” Circulation Research, vol. 74, no. 3, pp. 542–549, 1994. View at Scopus
  7. K. S. McDonald, M. R. Wolff, and R. L. Moss, “Force-velocity and power-load curves in rat skinned cardiac myocytes,” Journal of Physiology, vol. 511, no. 2, pp. 519–531, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. D. P. Fitzsimons, J. R. Patel, and R. L. Moss, “Cross-bridge interaction kinetics in rat myocardium are accelerated by strong binding of myosin to the thin filament,” Journal of Physiology, vol. 530, no. 2, pp. 263–272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Cazorla, Y. Wu, T. C. Irving, and H. Granzier, “Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes,” Circulation Research, vol. 88, no. 10, pp. 1028–1035, 2001. View at Scopus
  10. M. Regnier, H. Martin, R. J. Barsotti, A. J. Rivera, D. A. Martyn, and E. Clemmens, “Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle,” Biophysical Journal, vol. 87, no. 3, pp. 1815–1824, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. P. Chen, J. R. Patel, I. N. Rybakova, J. W. Walker, and R. L. Moss, “Protein kinase A-induced myofilament desensitization to Ca2+ as a result of phosphorylation of cardiac myosin-binding protein C,” Journal of General Physiology, vol. 136, no. 6, pp. 615–627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. S. Korte, T. J. Herron, M. J. Rovetto, and K. S. McDonald, “Power output is linearly related to MyHC content in rat skinned myocytes and isolated working hearts,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 289, no. 2, pp. H801–H812, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Belin, M. P. Sumandea, E. J. Allen et al., “Augmented protein kinase C-α-induced myofilament protein phosphorylation contributes to myofilament dysfunction in experimental congestive heart failure,” Circulation Research, vol. 101, no. 2, pp. 195–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Nowak, J. R. Peña, D. Urboniene, D. L. Geenen, R. J. Solaro, and B. M. Wolska, “Correlations between alterations in length-dependent Ca2+ activation of cardiac myofilaments and the end-systolic pressure-volume relation,” Journal of Muscle Research and Cell Motility, vol. 28, no. 7-8, pp. 415–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. McDonald, P. P. A. Mammen, K. T. Strang, R. L. Moss, and W. P. Miller, “Isometric and dynamic contractile properties of porcine skinned cardiac myocytes after stunning,” Circulation Research, vol. 77, no. 5, pp. 964–972, 1995. View at Scopus
  16. D. J. Duncker, N. M. Boontje, D. Merkus et al., “Prevention of myofilament dysfunction by β-blocker therapy in postinfarct remodeling,” Circulation: Heart Failure, vol. 2, no. 3, pp. 233–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. E. Stelzer, H. S. Norman, P. P. Chen, J. R. Patel, and R. L. Moss, “Transmural variation in myosin heavy chain isoform expression modulates the timing of myocardial force generation in porcine left ventricle,” Journal of Physiology, vol. 586, no. 21, pp. 5203–5214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. A. Emter and C. P. Baines, “Low-intensity aerobic interval training attenuates pathological left ventricular remodeling and mitochondrial dysfunction in aortic-banded miniature swine,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 299, no. 5, pp. H1348–H1356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. C. Hinken, F. S. Korte, and K. S. McDonald, “Porcine cardiac myocyte power output is increased after chronic exercise training,” Journal of Applied Physiology, vol. 101, no. 1, pp. 40–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Fabiato, “Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands,” Methods in Enzymology, vol. 157, no. C, pp. 378–417, 1988. View at Publisher · View at Google Scholar · View at Scopus
  21. R. L. Moss, “Sarcomere length-tension relations of frog skinned muscle fibres during calcium activation at short lengths,” Journal of Physiology, vol. 292, pp. 177–192, 1979. View at Scopus
  22. L. M. Hanft and K. S. McDonald, “Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres,” The Journal of Physiology, vol. 588, no. 15, pp. 2891–2903, 2010. View at Scopus
  23. F. S. Korte, K. S. McDonald, S. P. Harris, and R. L. Moss, “Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C,” Circulation Research, vol. 93, no. 8, pp. 752–758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. A. C. Hinken and K. S. McDonald, “Inorganic phosphate speeds loaded shortening in rat skinned cardiac myocytes,” American Journal of Physiology, Cell Physiology, vol. 287, no. 2, pp. C500–C507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. L. M. Hanft and K. S. McDonald, “Sarcomere length dependence of power output is increased after PKA treatment in rat cardiac myocytes,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 296, no. 5, pp. H1524–H1531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. S. McDonald, “Ca2+ dependence of loaded shortening in rat skinned cardiac myocytes and skeletal muscle fibres,” Journal of Physiology, vol. 525, no. 1, pp. 169–181, 2000. View at Scopus
  27. A. V. Hill, “The heat of shortening and the dynamic constants of muscle,” Proceedings of the Royal Society B, vol. 126, pp. 136–195, 1938.
  28. R. C. Woledge, N. A. Curtin, and E. Homsher, Energetic Aspects of Muscle Contraction, Academic Press, London, UK, 1985.
  29. J. M. Metzger, P. A. Wahr, D. E. Michele, F. Albayya, and M. V. Westfall, “Effects of myosin heavy chain isoform switching on Ca2+-activated tension development in single adult cardiac myocytes,” Circulation Research, vol. 84, no. 11, pp. 1310–1317, 1999. View at Scopus
  30. T. J. Herron, F. S. Korte, and K. S. McDonald, “Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes,” Circulation Research, vol. 89, no. 12, pp. 1184–1190, 2001. View at Scopus
  31. O. Cazorla, J. Y. Le Guennec, and E. White, “Length—Tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 5, pp. 735–744, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. I. F. Édes, D. Czuriga, G. Csányi et al., “Rate of tension redevelopment is not modulated by sarcomere length in permeabilized human, murine, and porcine cardiomyocytes,” American Journal of Physiology, Regulatory Integrative and Comparative Physiology, vol. 293, no. 1, pp. R20–R29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. R. Wolff, K. S. McDonald, and R. L. Moss, “Rate of tension development in cardiac muscle varies with level of activator calcium,” Circulation Research, vol. 76, no. 1, pp. 154–160, 1995. View at Scopus
  34. C. Vannier, H. Chevassus, and G. Vassort, “Ca-dependence of isometric force kinetics in single skinned ventricular cardiomyocytes from rats,” Cardiovascular Research, vol. 32, no. 3, pp. 580–586, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. D. P. Fitzsimons, J. R. Patel, K. S. Campbell, and R. L. Moss, “Cooperative mechanisms in the activation dependence of the rate of force development in rabbit skinned skeletal muscle fibers,” Journal of General Physiology, vol. 117, no. 2, pp. 133–148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. F. S. Korte and K. S. Mcdonald, “Sarcomere length dependence of rat skinned cardiac myocyte mechanical properties: dependence on myosin heavy chain,” Journal of Physiology, vol. 581, no. 2, pp. 725–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. S. Pereira, D. Pavlov, M. Nili, M. Greaser, E. Homsher, and R. L. Moss, “Kinetic differences in cardiac myosins with identical loop 1 sequences,” Journal of Biological Chemistry, vol. 276, no. 6, pp. 4409–4415, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. D. F. A. McKillop and M. A. Geeves, “Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament,” Biophysical Journal, vol. 65, no. 2, pp. 693–701, 1993. View at Scopus
  39. P. Vibert, R. Craig, and W. Lehman, “Steric-model for activation of muscle thin filaments,” Journal of Molecular Biology, vol. 266, no. 1, pp. 8–14, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Lehman, A. Galińska-Rakoczy, V. Hatch, L. S. Tobacman, and R. Craig, “Structural basis for the activation of muscle contraction by troponin and tropomyosin,” Journal of Molecular Biology, vol. 388, no. 4, pp. 673–681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. G. M. Diffee and E. Chung, “Altered single cell force-velocity and power properties in exercise-trained rat myocardium,” Journal of Applied Physiology, vol. 94, no. 5, pp. 1941–1948, 2003. View at Scopus
  42. E. Plante, D. Lachance, M. C. Drolet, E. Roussel, J. Couet, and M. Arsenault, “Dobutamine stress echocardiography in healthy adult male rats,” Cardiovascular Ultrasound, vol. 3, article no. 34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. H. S. Norman, J. Oujiri, S. J. Larue, C. B. Chapman, K. B. Margulies, and N. K. Sweitzer, “Decreased cardiac functional reserve in heart failure with preserved systolic function,” Journal of Cardiac Failure, vol. 17, no. 4, pp. 301–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Campbell, “Rate constant of muscle force redevelopment reflects cooperative activation as well as cross-bridge kinetics,” Biophysical Journal, vol. 72, no. 1, pp. 254–262, 1997. View at Scopus
  45. P. A. Hofmann and F. Fuchs, “Evidence for a force-dependent component of calcium binding to cardiac troponin C,” American Journal of Physiology, vol. 253, pp. C541–C546, 1987. View at Scopus
  46. P. A. Hofmann and F. Fuchs, “Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C,” American Journal of Physiology, vol. 253, no. 1, pp. C90–C96, 1987. View at Scopus
  47. J. Van Der Velden, J. W. De Jong, V. J. Owen, P. B. J. Burton, and G. J. M. Stienen, “Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes,” Cardiovascular Research, vol. 46, no. 3, pp. 487–495, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. J. P. Konhilas, T. C. Irving, B. M. Wolska et al., “Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing,” Journal of Physiology, vol. 547, no. 3, pp. 951–961, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. L. M. Hanft and K. S. McDonald, “Determinants of loaded shortening in rat cardiac myocytes 2010,” Biophysical Society Meetings. In press.