About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2012 (2012), Article ID 453838, 8 pages
http://dx.doi.org/10.1155/2012/453838
Review Article

“Dead Cells Talking”: The Silent Form of Cell Death Is Not so Quiet

1Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
2Department of Pharmacology and Therapeutics, NUI Galway, Galway, Ireland

Received 3 May 2012; Accepted 3 July 2012

Academic Editor: Eun-Kyoung Yim Breuer

Copyright © 2012 Richard Jäger and Howard O. Fearnhead. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Melino, R. A. Knight, and J. C. Ameisen, “The Siren’s song: this death that makes life live,” in Cell Death, G. Melino and D. Vaux, Eds., John Wiley & Sons, 2010.
  2. R. C. Taylor, S. P. Cullen, and S. J. Martin, “Apoptosis: controlled demolition at the cellular level,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 231–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Fan and A. Bergmann, “Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye,” Developmental Cell, vol. 14, no. 3, pp. 399–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. S. Tseng, D. S. Adams, D. Qiu, P. Koustubhan, and M. Levin, “Apoptosis is required during early stages of tail regeneration in Xenopus laevis,” Developmental Biology, vol. 301, no. 1, pp. 62–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. S. Hwang, C. Kobayashi, K. Agata, K. Ikeo, and T. Gojobori, “Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay,” Gene, vol. 333, pp. 15–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Chera, L. Ghila, K. Dobretz et al., “Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration,” Developmental Cell, vol. 17, no. 2, pp. 279–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Li, Q. Huang, J. Chen et al., “Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration,” Science Signaling, vol. 3, no. 110, p. ra13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Bonner, S. Bacon, C. G. Concannon et al., “INS-1 cells undergoing caspase-dependent apoptosis enhance the regenerative capacity of neighboring cells,” Diabetes, vol. 59, no. 11, pp. 2799–2808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Kuhrer, R. Kuzmits, W. Linkesch, and H. Ludwig, “Topical PGE2 enhances healing of chemotherapy-associated mucosal lesions,” The Lancet, vol. 1, no. 8481, p. 623, 1986. View at Scopus
  10. V. M. Paralkar, F. Borovecki, H. Z. Ke et al., “An EP2 receptor-selective prostaglandin E2 agonist induces bone healing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6736–6740, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. I. Atsumi, M. Tajima, A. Hadano, Y. Nakatani, M. Murakami, and I. Kudot, “Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2, which undergoes proteolytic inactivation,” Journal of Biological Chemistry, vol. 273, no. 22, pp. 13870–13877, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Goessling, T. E. North, S. Loewer et al., “Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration,” Cell, vol. 136, no. 6, pp. 1136–1147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Reader, D. Holt, and A. Fulton, “Prostaglandin E2 EP receptors as therapeutic targets in breast cancer,” Cancer and Metastasis Reviews, vol. 30, no. 3-4, pp. 449–463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. T. Moon, A. D. Kohn, G. V. De Ferrari, and A. Kaykas, “WNT and β-catenin signalling: diseases and therapies,” Nature Reviews Genetics, vol. 5, no. 9, pp. 691–701, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. Castellone, H. Teramoto, B. O. Williams, K. M. Druey, and J. S. Gutkind, “Medicine: prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis,” Science, vol. 310, no. 5753, pp. 1504–1510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Rundhaug and S. M. Fischer, “Molecular mechanisms of mouse skin tumor promotion,” Cancers, vol. 2, no. 2, pp. 436–482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. M. Sung, G. He, and S. M. Fischer, “Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development,” Cancer Research, vol. 65, no. 20, pp. 9304–9311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. L. Keith, M. W. Geraci, S. P. Nana et al., “Prostaglandin E2 receptor subtype 2 (EP2) null mice are protected against murine lung tumorigenesis,” Anticancer Research, vol. 26, no. 4 B, pp. 2857–2861, 2006. View at Scopus
  19. Y. Sasaki, D. Kamei, Y. Ishikawa et al., “Microsomal prostaglandin E synthase-1 is involved in multiple steps of colon carcinogenesis,” Oncogene, vol. 31, no. 24, pp. 2943–2952, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972. View at Scopus
  21. A. H. Wyllie, “Apoptosis: cell death in tissue regulation,” Journal of Pathology, vol. 153, no. 4, pp. 313–316, 1987. View at Scopus
  22. E. M. Michalak, C. J. Vandenberg, A. R. D. Delbridge et al., “Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death,” Genes and Development, vol. 24, no. 15, pp. 1608–1613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Labi, M. Erlacher, G. Krumschnabel et al., “Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation,” Genes and Development, vol. 24, no. 15, pp. 1602–1607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Nakano and K. H. Vousden, “PUMA, a novel proapoptotic gene, is induced by p53,” Molecular Cell, vol. 7, no. 3, pp. 683–694, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Cain, S. B. Bratton, and G. M. Cohen, “The Apaf-1 apoptosome: a large caspase-activating complex,” Biochimie, vol. 84, no. 2-3, pp. 203–214, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Qiu, X. Wang, B. Leibowitz, W. Yang, L. Zhang, and J. Yu, “PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice,” Hepatology, vol. 54, no. 4, pp. 1249–1258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Maeda, H. Kamata, J. L. Luo, H. Leffert, and M. Karin, “IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis,” Cell, vol. 121, no. 7, pp. 977–990, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Sakurai, G. He, A. Matsuzawa et al., “Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis,” Cancer Cell, vol. 14, no. 2, pp. 156–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. G. M. Ledda-Columbano, O. Coni, M. Curto et al., “Mitogen-induced liver hyperplasia does not substitute for compensatory regeneration during promotion of chemical hepatocarcinogenesis,” Carcinogenesis, vol. 13, no. 3, pp. 379–383, 1992. View at Scopus
  30. Q. Huang, F. Li, X. Liu et al., “Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy,” Nature Medicine, vol. 17, no. 7, pp. 860–866, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. W. Johnstone, A. A. Ruefli, and S. W. Lowe, “Apoptosis: a link between cancer genetics and chemotherapy,” Cell, vol. 108, no. 2, pp. 153–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Tenev, K. Bianchi, M. Darding et al., “The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs,” Molecular Cell, vol. 43, no. 3, pp. 432–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. C. J. F. Van Noorden, “Editorial: the history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition,” Acta Histochemica, vol. 103, no. 3, pp. 241–251, 2001. View at Scopus
  34. D. Chauvier, S. Renolleau, S. Holifanjaniaina et al., “Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor,” Cell Death and Disease, vol. 2, no. 9, p. e203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Vandenabeele, T. Vanden Berghe, and N. Festjens, “Caspase inhibitors promote alternative cell death pathways,” Science's STKE, vol. 2006, no. 358, p. pe44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Ditsworth, W. X. Zong, and C. B. Thompson, “Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus,” Journal of Biological Chemistry, vol. 282, no. 24, pp. 17845–17854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Campisi and F. D'Adda Di Fagagna, “Cellular senescence: when bad things happen to good cells,” Nature Reviews Molecular Cell Biology, vol. 8, no. 9, pp. 729–740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. G. Dalgleish and K. O'Byrne, “Inflammation and cancer: the role of the immune response and angiogenesis,” Cancer Treatment and Research, vol. 130, pp. 1–38, 2006. View at Scopus
  39. T. Kuilman, C. Michaloglou, L. C. W. Vredeveld et al., “Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network,” Cell, vol. 133, no. 6, pp. 1019–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. V. G. Gorgoulis and T. D. Halazonetis, “Oncogene-induced senescence: the bright and dark side of the response,” Current Opinion in Cell Biology, vol. 22, no. 6, pp. 816–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. D. Ryoo, T. Gorenc, and H. Steller, “Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways,” Developmental Cell, vol. 7, no. 4, pp. 491–501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. R. Huh, M. Guo, and B. A. Hay, “Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase dronc in a nonapoptotic role,” Current Biology, vol. 14, no. 14, pp. 1262–1266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. B. S. Wells, E. Yoshida, and L. A. Johnston, “Compensatory proliferation in Drosophila imaginal discs requires dronc-dependent p53 activity,” Current Biology, vol. 16, no. 16, pp. 1606–1615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Kondo, N. Senoo-Matsuda, Y. Hiromi, and M. Miura, “DRONC coordinates cell death and compensatory proliferation,” Molecular and Cellular Biology, vol. 26, no. 19, pp. 7258–7268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Pérez-Garijo, F. A. Martín, and G. Morata, “Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila,” Development, vol. 131, no. 22, pp. 5591–5598, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. C. M. Ulrich, J. Bigler, and J. D. Potter, “Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics,” Nature Reviews Cancer, vol. 6, no. 2, pp. 130–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Albini and M. B. Sporn, “The tumour microenvironment as a target for chemoprevention,” Nature Reviews Cancer, vol. 7, no. 2, pp. 139–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. R. Elliott, F. B. Chekeni, P. C. Trampont et al., “Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance,” Nature, vol. 461, no. 7261, pp. 282–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. F. B. Chekeni, M. R. Elliott, J. K. Sandilos et al., “Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis,” Nature, vol. 467, no. 7317, pp. 863–867, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Lauber, E. Bohn, S. M. Kröber et al., “Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal,” Cell, vol. 113, no. 6, pp. 717–730, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. D. R. Gude, S. E. Alvarez, S. W. Paugh et al., “Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal,” FASEB Journal, vol. 22, no. 8, pp. 2629–2638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Ravichandran, “Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways,” Immunity, vol. 35, no. 4, pp. 445–455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. A. B. Roberts and L. M. Wakefield, “The two faces of transforming growth factor β in carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 8621–8623, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Barron and T. A. Wynn, “Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages,” American Journal of Physiology, vol. 300, no. 5, pp. G723–G728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Steidl, T. Lee, S. P. Shah et al., “Tumor-associated macrophages and survival in classic Hodgkin's lymphoma,” New England Journal of Medicine, vol. 362, no. 10, pp. 875–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Z. Qian, J. Li, H. Zhang et al., “CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis,” Nature, vol. 475, no. 7355, pp. 222–225, 2011. View at Publisher · View at Google Scholar · View at Scopus