About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2012 (2012), Article ID 796926, 10 pages
http://dx.doi.org/10.1155/2012/796926
Review Article

Cardiomyopathy Classification: Ongoing Debate in the Genomics Era

1Genomics Research Centre, Griffith Health Institute, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
2Department of Cardiology, Gold Coast Hospital, Southport Campus, Nerang Street, Southport, QLD 4218, Australia

Received 8 March 2012; Revised 14 May 2012; Accepted 31 May 2012

Academic Editor: Aldrin V. Gomes

Copyright © 2012 Charles McCartan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Maron, J. A. Towbin, G. Thiene et al., “Contemporary definitions and classification of the cardiomyopathies. An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention,” Circulation, vol. 113, no. 14, pp. 1807–1816, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Elliott, B. Andersson, E. Arbustini et al., “Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases,” European Heart Journal, vol. 29, no. 2, pp. 270–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. F. I. Marcus, G. H. Fontaine, and G. Guiraudon, “Right ventricular dysplasia: a report of 24 adult cases,” Circulation, vol. 65, no. 2, pp. 384–398, 1982. View at Scopus
  4. G. Thiene, A. Nava, D. Corrado, L. Rossi, and N. Pennelli, “Right ventricular cardiomyopathy and sudden death in young people,” New England Journal of Medicine, vol. 318, no. 3, pp. 129–133, 1988. View at Scopus
  5. A. A. T. Geisterfer-Lowrance, S. Kass, G. Tanigawa et al., “A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation,” Cell, vol. 62, no. 5, pp. 999–1006, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Tanigawa, J. A. Jarcho, S. Kass et al., “A molecular basis for familial hypertrophic cardiomyopathy: an α/β cardiac myosin heavy chain hybrid gene,” Cell, vol. 62, no. 5, pp. 991–998, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Niimura, K. K. Patton, W. J. McKenna et al., “Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly,” Circulation, vol. 105, no. 4, pp. 446–451, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Watkins, D. Conner, L. Thierfelder et al., “Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy,” Nature Genetics, vol. 11, no. 4, pp. 434–437, 1995. View at Scopus
  9. G. Bonne, L. Carrier, J. Bercovici et al., “Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy,” Nature Genetics, vol. 11, no. 4, pp. 438–440, 1995. View at Scopus
  10. A. Kimura, H. Harada, J.-E. Park et al., “Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy,” Nature Genetics, vol. 16, no. 4, pp. 379–382, 1997. View at Publisher · View at Google Scholar
  11. L. Thierfelder, H. Watkins, C. MacRae et al., “α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere,” Cell, vol. 77, no. 5, pp. 701–712, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Hoffmann, H. Schmidt-Traub, A. Perrot, K. J. Osterziel, and R. Gessner, “First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy,” Human mutation, vol. 17, no. 6, p. 524, 2001. View at Scopus
  13. K. Poetter, H. Jiang, S. Hassanzadeh et al., “Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle,” Nature Genetics, vol. 13, no. 1, pp. 63–69, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. T. M. Olson, T. P. Doan, N. Y. Kishimoto, F. G. Whitby, M. J. Ackerman, and L. Fananapazir, “Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 9, pp. 1687–1694, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. B. L. Siu, H. Niimura, J. A. Osborne et al., “Familial dilated cardiomyopathy locus maps to chromosome 2q31,” Circulation, vol. 99, no. 8, pp. 1022–1026, 1999. View at Scopus
  16. M. Satoh, M. Takahashi, T. Sakamoto, M. Hiroe, F. Marumo, and A. Kimura, “Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene,” Biochemical and Biophysical Research Communications, vol. 262, no. 2, pp. 411–417, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. M. H. Gollob, M. S. Green, A. S. L. Tang, and R. Roberts, “PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy,” Current Opinion in Cardiology, vol. 17, no. 3, pp. 229–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Arad, B. J. Maron, J. M. Gorham et al., “Glycogen storage diseases presenting as hypertrophic cardiomyopathy,” New England Journal of Medicine, vol. 352, no. 4, pp. 362–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. M. Olson, V. V. Michels, S. N. Thibodeau, Y. S. Tai, and M. T. Keating, “Actin mutations in dilated cardiomyopathy, a heritable form of heart failure,” Science, vol. 280, no. 5364, pp. 750–752, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Li, T. Tapscoft, O. Gonzalez et al., “Desmin mutation responsible for idiopathic dilated cardiomyopathy,” Circulation, vol. 100, no. 5, pp. 461–464, 1999. View at Scopus
  21. S. Tsubata, K. R. Bowles, M. Vatta et al., “Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy,” Journal of Clinical Investigation, vol. 106, no. 5, pp. 655–662, 2000. View at Scopus
  22. M. Kamisago, S. D. Sharma, S. R. DePalma et al., “Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy,” New England Journal of Medicine, vol. 343, no. 23, pp. 1688–1696, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Daehmlow, J. Erdmann, T. Knueppel et al., “Novel mutations in sarcomeric protein genes in dilated cardiomyopathy,” Biochemical and Biophysical Research Communications, vol. 298, no. 1, pp. 116–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Li, G. Z. Czernuszewicz, O. Gonzalez et al., “Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy,” Circulation, vol. 104, no. 18, pp. 2188–2193, 2001. View at Scopus
  25. E. L. Hanson, P. M. Jakobs, H. Keegan et al., “Cardiac troponin T lysine 210 deletion in a family with dilated cardiomyopathy,” Journal of Cardiac Failure, vol. 8, no. 1, pp. 28–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. M. Olson, N. Y. Kishimoto, F. G. Whitby, and V. V. Michels, “Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 4, pp. 723–732, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Gerull, M. Gramlich, J. Atherton et al., “Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy,” Nature Genetics, vol. 30, no. 2, pp. 201–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. T. M. Olson, S. Illenberger, N. Y. Kishimoto, S. Huttelmaier, M. T. Keating, and B. M. Jockusch, “Metavinculin mutations alter actin interaction in dilated cardiomyopathy,” Circulation, vol. 105, no. 4, pp. 431–437, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Knöll, M. Hoshijima, H. M. Hoffman et al., “The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy,” Cell, vol. 111, no. 7, pp. 943–955, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Mohapatra, S. Jimenez, J. H. Lin et al., “Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis,” Molecular Genetics and Metabolism, vol. 80, no. 1-2, pp. 207–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Carniel, et al., “Molecular screening of alpha-myosin heavy chainin patients with dilated and hypertrophic cardiomyopathy,” Circulation, vol. 108, no. 17, pp. 263–264, 2003.
  32. M. Bienengraeber, T. M. Olson, V. A. Selivanov et al., “ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating,” Nature Genetics, vol. 36, no. 4, pp. 382–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Fatkin, C. Macrae, T. Sasaki et al., “Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease,” New England Journal of Medicine, vol. 341, no. 23, pp. 1715–1724, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Schmitt, M. Kamisago, M. Asahi et al., “Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban,” Science, vol. 299, no. 5611, pp. 1410–1413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Haghighi, F. Kolokathis, L. Pater et al., “Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human,” Journal of Clinical Investigation, vol. 111, no. 6, pp. 869–876, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Vatta, B. Mohapatra, S. Jimenez et al., “Mutations in cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction,” Journal of the American College of Cardiology, vol. 42, no. 11, pp. 2014–2027, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Muntoni, M. Cau, A. Ganau et al., “Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy,” New England Journal of Medicine, vol. 329, no. 13, pp. 921–925, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. J. A. Towbin, J. F. Hejtmancik, P. Brink et al., “X-linked dilated cardiomyopathy: molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus,” Circulation, vol. 87, no. 6, pp. 1854–1865, 1993. View at Scopus
  39. S. Bione, P. D'Adamo, E. Maestrini, A. K. Gedeon, P. A. Bolhuis, and D. Toniolo, “A novel X-linked gene, G4.5. is responsible for Barth syndrome,” Nature Genetics, vol. 12, no. 4, pp. 385–389, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. P. D'Adamo, L. Fassone, A. Gedeon et al., “The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies,” American Journal of Human Genetics, vol. 61, no. 4, pp. 862–867, 1997. View at Scopus
  41. R. T. Murphy, J. Mogensen, A. Shaw, T. Kubo, S. Hughes, and W. J. McKenna, “Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy,” Lancet, vol. 363, no. 9406, pp. 371–372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Rampazzo, A. Nava, G. A. Danieli et al., “The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24,” Human Molecular Genetics, vol. 3, no. 6, pp. 959–962, 1994. View at Scopus
  43. A. Rampazzo, G. Beffagna, A. Nava et al., “Arrhythmogenic right ventricular cardiomyopathy type 1 (ARVD1): confirmation of locus assignment and mutation screening of four candidate genes,” European Journal of Human Genetics, vol. 11, no. 1, pp. 69–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Rampazzo, A. Nava, P. Erne et al., “A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42-q43,” Human Molecular Genetics, vol. 4, no. 11, pp. 2151–2154, 1995. View at Scopus
  45. S. O. Marx, S. Reiken, Y. Hisamatsu et al., “PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts,” Cell, vol. 101, no. 4, pp. 365–376, 2000. View at Scopus
  46. G. M. Severini, M. Krajinovic, B. Pinamonti et al., “A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14,” Genomics, vol. 31, no. 2, pp. 193–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Rampazzo, A. Nava, M. Miorin et al., “ARVD4, a new locus for arrhythmogenic right ventricular cardiomyopathy, maps to chromosome 2 long arm,” Genomics, vol. 45, no. 2, pp. 259–263, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Ahmad, D. Li, A. Karibe et al., “Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23,” Circulation, vol. 98, no. 25, pp. 2791–2795, 1998. View at Scopus
  49. Y. Asano, S. Takashima, M. Asakura et al., “Lamr1 functional retroposon causes right ventricular dysplasia in mice,” Nature Genetics, vol. 36, no. 2, pp. 123–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Li, F. Ahmad, M. J. Gardner et al., “The locus of a novel gene responsible for arrhythmogenic right- ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12-p14,” American Journal of Human Genetics, vol. 66, no. 1, pp. 148–156, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Li, O. Gonzalez, L. L. Bachinski, and R. Roberts, “Human protein tyrosine phosphatase-like gene: expression profile, genomic structure, and mutation analysis in families with ARVD,” Gene, vol. 256, no. 1-2, pp. 237–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Melberg, A. Oldfors, C. Blomström-Lundqvist et al., “Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy linked to chromosome 10q,” Annals of Neurology, vol. 46, no. 5, pp. 684–692, 1999. View at Publisher · View at Google Scholar
  53. A. Ferreiro, C. Ceuterick-De Groote, J. J. Marks et al., “Desmin-related myopathy with mallory body-like inclusions is caused by mutations of the selenoprotein N gene,” Annals of Neurology, vol. 55, no. 5, pp. 676–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. G. M. Olavesen, E. Bentley, R. F. Mason, R. J. Stephens, and J. Ragoussis, “Fine mapping of 39 ESTs on human chromosome 6p23-p25,” Genomics, vol. 46, no. 2, pp. 303–306, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Gerull, A. Heuser, T. Wichter et al., “Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy,” Nature Genetics, vol. 36, no. 11, pp. 1162–1164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Bonné, J. Van Hengel, and F. Van Roy, “Chromosomal mapping of human armadillo genes belonging to the p120(ctn)/plakophilin subfamily,” Genomics, vol. 51, no. 3, pp. 452–454, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Syrris, D. Ward, A. Evans et al., “Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2,” American Journal of Human Genetics, vol. 79, no. 5, pp. 978–984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Arnemann, N. K. Spurr, A. I. Magee, and R. S. Buxton, “The human gene (DSG2) coding for HDGC, a second member of the desmoglein subfamily of the desmosomal cadherins, is, like DSG1 coding for desmoglein DGI, assigned to chromosome 18,” Genomics, vol. 13, no. 2, pp. 484–486, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. M. D. Greenwood, M. D. Marsden, C. M. E. Cowley, V. K. Sahota, and R. S. Buxton, “Exon-intron organization of the human type 2 desmocollin gene (DSC2): desmocollin gene structure is closer to “classical” cadherins than to desmogleins,” Genomics, vol. 44, no. 3, pp. 330–335, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. R. S. Buxton, G. N. Wheeler, S. C. Pidsley et al., “Mouse desmocollin (Dsc3) and desmoglein (Dsg1) genes are closely linked in the proximal region of chromosome 18,” Genomics, vol. 21, no. 3, pp. 510–516, 1994. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Richardson, R. W. McKenna, M. Bristow et al., “Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies,” Circulation, vol. 93, no. 5, pp. 841–842, 1996. View at Scopus
  62. P. Elliott, “The 2006 American Heart Association classification of cardiomyopathies is not the gold standard,” Circulation, vol. 1, no. 1, pp. 77–80, 2008. View at Scopus
  63. B. J. Maron, “Is the 2006 American Heart Association classification of cardiomyopathies the gold standard? The 2006 American Heart Association Classification of Cardiomyopathies Is the Gold Standard,” Circulation, vol. 1, no. 1, pp. 72–76, 2008. View at Scopus
  64. G. Thiene, D. Corrado, and C. Basso, “Cardiomyopathies: is it time for a molecular classification?” European Heart Journal, vol. 25, no. 20, pp. 1772–1775, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Maisch, M. Noutsias, V. Ruppert, A. Richter, and S. Pankuweit, “Cardiomyopathies: classification, diagnosis, and treatment,” Heart Failure Clinics, vol. 8, no. 1, pp. 53–78, 2012. View at Publisher · View at Google Scholar
  66. P. Charron and M. Komajda, “Molecular genetics in hypertrophic cardiomyopathy: towards individualized management of the disease,” Expert Review of Molecular Diagnostics, vol. 6, no. 1, pp. 65–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Elliott and W. J. McKenna, “Hypertrophic cardiomyopathy,” Lancet, vol. 363, no. 9424, pp. 1881–1891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. B. J. Maron, “Hypertrophic cardiomyopathy,” Circulation, vol. 106, no. 19, pp. 2419–2421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Richard, V. Fressart, P. Charron, and B. Hainque, “Genetics of inherited cardiomyopathies,” Pathologie Biologie, vol. 58, no. 5, pp. 343–352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Richard, E. Villard, P. Charron, and R. Isnard, “The genetic bases of cardiomyopathies,” Journal of the American College of Cardiology, vol. 48, no. 9, pp. A79–A89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. R. E. Hershberger, J. Lindenfeld, L. Mestroni, C. E. Seidman, M. R. G. Taylor, and J. A. Towbin, “Genetic evaluation of cardiomyopathy—a heart failure society of America practice guideline,” Journal of Cardiac Failure, vol. 15, no. 2, pp. 83–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. Q. Xu, S. Dewey, S. Nguyen, and A. V. Gomes, “Malignant and benign mutations in familial cardiomyopathies: insights into mutations linked to complex cardiovascular phenotypes,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 5, pp. 899–909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. J. R. Gimeno, L. Monserrat, I. Pérez-Sánchez et al., “Hypertrophic cardiomyopathy. A study of the troponin-T gene in 127 Spanish families,” Revista Espanola de Cardiologia, vol. 62, no. 12, pp. 1473–1477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. B. J. Maron, W. J. McKenna, G. K. Danielson et al., “American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy: a report of the American College of cardiology foundation task force on clinical expert consensus documents and the European society of cardiology committee for practice guidelines,” European Heart Journal, vol. 24, no. 21, pp. 1965–1991, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. B. J. Maron, “Sudden death in hypertrophic cardiomyopathy,” Journal of Cardiovascular Translational Research, vol. 2, no. 4, pp. 368–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. C. M. Oakley, “Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies,” British Heart Journal, vol. 44, no. 6, pp. 672–673, 1980. View at Scopus
  77. J. R. Benotti, W. Grossman, and P. F. Cohn, “Clinical profile of restrictive cardiomyopathy,” Circulation, vol. 61, no. 6, pp. 1206–1212, 1980. View at Scopus
  78. N. Rajagopalan, M. J. Garcia, L. Rodriguez et al., “Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy,” American Journal of Cardiology, vol. 87, no. 1, pp. 86–94, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. S. S. Kushwaha, J. T. Fallon, and V. Fuster, “Medical progress—restrictive cardiomyopathy,” New England Journal of Medicine, vol. 336, no. 4, pp. 267–276, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. A. P. Fitzpatrick, L. M. Shapiro, A. F. Rickards, and P. A. Poole-Wilson, “Familial restrictive cardiomyopathy with atrioventricular block and skeletal myopathy,” British Heart Journal, vol. 63, no. 2, pp. 114–118, 1990. View at Scopus
  81. N. M. Ammash, J. B. Seward, K. R. Bailey, W. D. Edwards, and A. J. Tajik, “Clinical profile and outcome of idiopathic restrictive cardiomyopathy,” Circulation, vol. 101, no. 21, pp. 2490–2496, 2000. View at Scopus
  82. M. R. G. Taylor, E. Carniel, and L. Mestroni, “Cardiomyopathy, familial dilated,” Orphanet Journal of Rare Diseases, vol. 1, no. 1, article 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. J. A. Towbin, A. M. Lowe, S. D. Colan et al., “Incidence, causes, and outcomes of dilated cardiomyopathy in children,” Journal of the American Medical Association, vol. 296, no. 15, pp. 1867–1876, 2006. View at Scopus
  84. J. A. Towbin and N. E. Bowles, “The failing heart,” Nature, vol. 415, no. 6868, pp. 227–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. J. U. Hibbard, M. Lindheimer, and R. M. Lang, “A modified definition for peripartum cardiomyopathy and prognosis based on echocardiography,” Obstetrics and Gynecology, vol. 94, no. 2, pp. 311–316, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Johnson-Coyle, L. Jensen, and A. Sobey, “Peripartum cardiomyopathy: review and practice guidelines,” American Journal of Critical Care, vol. 21, no. 2, pp. 89–99, 2012. View at Publisher · View at Google Scholar
  87. U. Elkayam, M. W. Akhter, H. Singh et al., “Pregnancy-associated cardiomyopathy: clinical characteristics and a comparison between early and late presentation,” Circulation, vol. 111, no. 16, pp. 2050–2055, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Sliwa, J. Fett, and U. Elkayam, “Peripartum cardiomyopathy,” Lancet, vol. 368, no. 9536, pp. 687–693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. O. Forster, D. Hilfiker-Kleiner, A. A. Ansari et al., “Reversal of IFN-γ, oxLDL and prolactin serum levels correlate with clinical improvement in patients with peripartum cardiomyopathy,” European Journal of Heart Failure, vol. 10, no. 9, pp. 861–868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Marmursztejn, O. Vignaux, F. Goffinet, L. Cabanes, and D. Duboc, “Delayed-enhanced cardiac magnetic resonance imaging features in peripartum cardiomyopathy,” International Journal of Cardiology, vol. 137, no. 3, pp. e63–e64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. A. E. Baruteau, G. Leurent, R. P. Martins et al., “Peripartum cardiomyopathy in the era of cardiac magnetic resonance imaging: first results and perspectives,” International Journal of Cardiology, vol. 144, no. 1, pp. 143–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. A. A. Ansari, J. D. Fett, R. E. Carraway, A. E. Mayne, N. Onlamoon, and J. B. Sundstrom, “Autoimmune mechanisms as the basis for human peripartum cardiomyopathy,” Clinical Reviews in Allergy and Immunology, vol. 23, no. 3, pp. 301–324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Sliwa, O. Förster, E. Libhaber et al., “Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients,” European Heart Journal, vol. 27, no. 4, pp. 441–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Torre-Amione, S. Kapadia, C. Benedict, H. Oral, J. B. Young, and D. L. Mann, “Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD),” Journal of the American College of Cardiology, vol. 27, no. 5, pp. 1201–1206, 1996. View at Publisher · View at Google Scholar · View at Scopus
  95. B. Bozkurt, F. S. Villaneuva, R. Holubkov et al., “Intravenous immune globulin in the therapy of peripartum cardiomyopathy,” Journal of the American College of Cardiology, vol. 34, no. 1, pp. 177–180, 1999. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Sliwa, D. Skudicky, G. Candy, A. Bergemann, M. Hopley, and P. Sareli, “The addition of pentoxifylline to conventional therapy improves outcome in patients with peripartum cardiomyopathy,” European Journal of Heart Failure, vol. 4, no. 3, pp. 305–309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. M. N. Rizeq, P. R. Rickenbacher, M. B. Fowler, and M. E. Billingham, “Incidence of myocarditis in peripartum cardiomyopathy,” American Journal of Cardiology, vol. 74, no. 5, pp. 474–477, 1994. View at Publisher · View at Google Scholar · View at Scopus
  98. D. Hilfiker-Kleiner, K. Kaminski, E. Podewski et al., “A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy,” Cell, vol. 128, no. 3, pp. 589–600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. U. Elkayam and S. Goland, “Bromocriptine for the treatment of peripartum cardiomyopathy,” Circulation, vol. 121, no. 13, pp. 1463–1464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Thiene, D. Corrado, and C. Basso, “Arrhythmogenic right ventricular cardiomyopathy/dysplasia,” Orphanet Journal of Rare Diseases, vol. 2, no. 1, article 45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. W. J. McKenna, et al., “Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology,” British Heart Journal, vol. 71, no. 3, pp. 215–218, 1994.
  102. D. Corrado, L. Leoni, M. S. Link et al., “Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia,” Circulation, vol. 108, no. 25, pp. 3084–3091, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Nava, G. Thiene, B. Canciani et al., “Familial occurrence of right ventricular dysplasia: a study involving nine families,” Journal of the American College of Cardiology, vol. 12, no. 5, pp. 1222–1228, 1988. View at Scopus
  104. K. Pilichou, A. Nava, C. Basso et al., “Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy,” Circulation, vol. 113, no. 9, pp. 1171–1179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Rampazzo, “Regulatory mutations in transforming growth factor-beta 3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1,” Journal of the American College of Cardiology, vol. 45, no. 3, pp. 10A–11A, 2005.
  106. A. Rampazzo, A. Nava, S. Malacrida et al., “Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy,” American Journal of Human Genetics, vol. 71, no. 5, pp. 1200–1206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. N. Tiso, D. A. Stephan, A. Nava et al., “Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2),” Human Molecular Genetics, vol. 10, no. 3, pp. 189–194, 2001. View at Scopus
  108. M. W. Chung, T. Tsoutsman, and C. Semsarian, “Hypertrophic cardiomyopathy: from gene defect to clinical disease,” Cell Research, vol. 13, no. 1, pp. 9–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. R. E. Hershberger, A. Morales, and J. D. Siegfried, “Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals,” Genetics in Medicine, vol. 12, no. 11, pp. 655–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. R. J. Hajjar, F. Del Monte, T. Matsui, and A. Rosenzweig, “Prospects for gene therapy for heart failure,” Circulation Research, vol. 86, no. 6, pp. 616–621, 2000. View at Scopus
  111. F. I. Marcus and W. Zareba, “The electrocardiogram in right ventricular cardiomyopathy/dysplasia. How can the electrocardiogram assist in understanding the pathologic and functional changes of the heart in this disease?” Journal of Electrocardiology, vol. 42, no. 2, pp. 136.e1–136.e5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. E. D. Wigle, H. Rakowski, B. P. Kimball, and W. G. Williams, “Hypertrophic cardiomyopathy: clinical spectrum and treatment,” Circulation, vol. 92, no. 7, pp. 1680–1692, 1995. View at Scopus
  113. E. Abergel, G. Chatellier, A. A. Hagege et al., “Serial left ventricular adaptations in world-class professional cyclists: implications for disease screening and follow-up,” Journal of the American College of Cardiology, vol. 44, no. 1, pp. 144–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. R. A. Nishimura and D. R. Holmes, “Hypertrophic obstructive cardiomyopathy,” New England Journal of Medicine, vol. 350, no. 13, pp. 1320–1327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Sen-Chowdhry, P. Syrris, and W. J. McKenna, “Genetics of right ventricular cardiomyopathy,” Journal of Cardiovascular Electrophysiology, vol. 16, no. 8, pp. 927–935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. G. Quarta, A. Muir, A. Pantazis et al., “Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria,” Circulation, vol. 123, no. 23, pp. 2701–2709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Karibe, L. S. Tobacman, J. Strand et al., “Hypertrophic cardiomyopathy caused by a novel α-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis,” Circulation, vol. 103, no. 1, pp. 65–71, 2001. View at Scopus
  118. H. Niimura, L. L. Bachinski, S. Sangwatanaroj et al., “Mutations in the gene for cardiac myosin-binding protein C and late- onset familial hypertrophic cardiomyopathy,” New England Journal of Medicine, vol. 338, no. 18, pp. 1248–1257, 1998. View at Publisher · View at Google Scholar · View at Scopus
  119. A. P. Landstrom and M. J. Ackerman, “Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy,” Circulation, vol. 122, no. 23, pp. 2441–2449, 2010. View at Publisher · View at Google Scholar · View at Scopus