About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2012 (2012), Article ID 808934, 5 pages
http://dx.doi.org/10.1155/2012/808934
Review Article

Transcriptional Regulation of the p53 Tumor Suppressor Gene in S-Phase of the Cell-Cycle and the Cellular Response to DNA Damage

1Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
2Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
3Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA

Received 3 April 2012; Revised 20 June 2012; Accepted 21 June 2012

Academic Editor: Rolf J. Craven

Copyright © 2012 David Reisman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Oren and J. Bartek, “The sunny side of p53,” Cell, vol. 128, no. 5, pp. 826–828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. H. Vousden and C. Prives, “Blinded by the light: the growing complexity of p53,” Cell, vol. 137, no. 3, pp. 413–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Beckerman and C. Prives, “Transcriptional regulation by p53,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Toledo and G. M. Wahl, “Regulating the p53 pathway: in vitro hypotheses, in vivo veritas,” Nature Reviews Cancer, vol. 6, no. 12, pp. 909–923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. W. C. Li, J. P. Liu, P. C. Schmid et al., “Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities,” Oncogene, vol. 25, no. 21, pp. 3006–3022, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Pedeux, S. Sengupta, J. C. Shen et al., “ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation,” Molecular and Cellular Biology, vol. 25, no. 15, pp. 6639–6648, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Zheng, H. You, X. Z. Zhou et al., “The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response,” Nature, vol. 419, no. 6909, pp. 849–853, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Zacchi, M. Gostissa, T. Uchida et al., “The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults,” Nature, vol. 419, no. 6909, pp. 853–857, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. P. Kruse and W. Gu, “SnapShot: p53 posttranslational modifications,” Cell, vol. 133, no. 5, pp. 930–e1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Olsson, C. Manzl, A. Strasser, and A. Villunger, “How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression?” Cell Death and Differentiation, vol. 14, no. 9, pp. 1561–1575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. H. Vousden and X. Lu, “Live or let die: the cell's response to p53,” Nature Reviews Cancer, vol. 2, no. 8, pp. 594–604, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. N. E. Sharpless and R. A. DePinho, “p53: good cop/bad cop,” Cell, vol. 110, no. 1, pp. 9–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. K. H. Vousden and C. Prives, “P53 and prognosis: new insights and further complexity,” Cell, vol. 120, no. 1, pp. 7–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. B. Kastan and E. Berkovich, “p53: a two-faced cancer gene,” Nature Cell Biology, vol. 9, no. 5, pp. 489–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Weisz, M. Oren, and V. Rotter, “Transcription regulation by mutant p53,” Oncogene, vol. 26, no. 15, pp. 2202–2211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Strano, S. Dell'Orso, S. Di Agostino, G. Fontemaggi, A. Sacchi, and G. Blandino, “Mutant p53: an oncogenic transcription factor,” Oncogene, vol. 26, no. 15, pp. 2212–2219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Goh, C. R. Coffill, and D. P. Lane, “The role of mutant p53 in human cancer,” Journal of Pathology, vol. 223, no. 2, pp. 116–126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. N. C. Reich and A. J. Levine, “Growth regulation of a cellular tumour antigen, p53, in nontransformed cells,” Nature, vol. 308, no. 5955, pp. 199–201, 1984. View at Scopus
  19. J. C. Reed, J. D. Alpers, P. C. Nowell, and R. G. Hoover, “Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 11, pp. 3982–3986, 1986. View at Scopus
  20. J. Mosner, T. Mummenbrauer, C. Bauer, G. Sczakiel, F. Grosse, and W. Deppert, “Negative feedback regulation of wild-type p53 biosynthesis,” EMBO Journal, vol. 14, no. 18, pp. 4442–4449, 1995. View at Scopus
  21. K. Boggs and D. Reisman, “Increased p53 transcription prior to DNA synthesis is regulated through a novel regulatory element within the p53 promoter,” Oncogene, vol. 25, no. 4, pp. 555–565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Boggs and D. Reisman, “C/EBPβ participates in regulating transcription of the p53 gene in response to mitogen stimulation,” Journal of Biological Chemistry, vol. 282, no. 11, pp. 7982–7990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Ginsberg, M. Oren, M. Yaniv, and J. Piette, “Protein-binding elements in the promoter region of the mouse p53 gene,” Oncogene, vol. 5, no. 9, pp. 1285–1290, 1990. View at Scopus
  24. P. F. Johnson, “Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors,” Journal of Cell Science, vol. 118, no. 12, pp. 2545–2555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. P. Ramji and P. Foka, “CCAAT/enhancer-binding proteins: structure, function and regulation,” Biochemical Journal, vol. 365, no. 3, pp. 561–575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. S. L. McKnight, “McBindall—a better name for CCAAT/enhancer binding proteins?” Cell, vol. 107, no. 3, pp. 259–261, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. E. M. Eaton, M. Hanlon, L. Bundy, and L. Sealy, “Characterization of C/EBPβ isoforms in normal versus neoplastic mammary epithelial cells,” Journal of Cellular Physiology, vol. 189, no. 1, pp. 91–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Descombes, M. Chojkier, S. Lichtsteiner, E. Falvey, and U. Schibler, “LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein,” Genes and Development, vol. 4, no. 9, pp. 1541–1551, 1990. View at Scopus
  29. V. Ossipow, P. Descombes, and U. Schibler, “CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 8219–8223, 1993. View at Scopus
  30. A. Polson, P. Takahashi, and D. Reisman, “ChIP (chromatin immunoprecipitation) analysis demonstrates co-ordinated binding of two transcription factors to the promoter of the p53 tumour-suppressor gene,” Cell Biology International, vol. 34, no. 9, pp. 883–891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Schweisguth and J. W. Posakony, “Suppressor of Hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates,” Cell, vol. 69, no. 7, pp. 1199–1212, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Kato, Y. Taniguchi, H. Kurooka et al., “Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives,” Development, vol. 124, no. 20, pp. 4133–4141, 1997. View at Scopus
  33. F. Oswald, M. Winkler, Y. Cao et al., “RBP-Jκ/SHARP recruits CtIP/CtBP corepressors to silence notch target genes,” Molecular and Cellular Biology, vol. 25, no. 23, pp. 10379–10390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Robert-Moreno, L. Espinosa, J. L. de la Pompa, and A. Bigas, “RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells,” Development, vol. 132, no. 5, pp. 1117–1126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Miele, “Notch signaling,” Clinical Cancer Research, vol. 12, article 1074e9, 2006.
  36. J. J. D. Hsieh and S. D. Hayward, “Masking of the CBF1/RBPJ(κ) transcriptional repression domain by Epstein-Barr virus EBNA2,” Science, vol. 268, no. 5210, pp. 560–563, 1995. View at Scopus
  37. I. Olave, D. Reinberg, and L. D. Vales, “The mammalian transcriptional repressor RBP (CBF1) targets TFIID and TFIAA to prevent activated transcription,” Genes and Development, vol. 12, no. 11, pp. 1621–1637, 1998. View at Scopus
  38. K. Boggs, B. Henderson, and D. Reisman, “RBP-Jκ binds to and represses transcription of the p53 tumor suppressor gene,” Cell Biology International, vol. 33, no. 3, pp. 318–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Takahashi, A. Polson, and D. Reisman, “Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle,” Apoptosis, vol. 16, no. 9, pp. 950–958, 2011. View at Publisher · View at Google Scholar · View at Scopus