About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2012 (2012), Article ID 823597, 11 pages
http://dx.doi.org/10.1155/2012/823597
Review Article

A Critical Appraisal of Quantitative Studies of Protein Degradation in the Framework of Cellular Proteostasis

1Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” (UAM-CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
2Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

Received 1 June 2012; Accepted 18 June 2012

Academic Editor: Dmitry Karpov

Copyright © 2012 Beatriz Alvarez-Castelao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. B. Qian, M. F. Princiotta, J. R. Bennink, and J. W. Yewdell, “Characterization of rapidly degraded polypeptides in mammalian cells reveals a novel layer of nascent protein quality control,” Journal of Biological Chemistry, vol. 281, no. 1, pp. 392–400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. F. U. Hartl, A. Bracher, and M. Hayer-Hartl, “Molecular chaperones in protein folding and proteostasis,” Nature, vol. 475, no. 7356, pp. 324–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Moran, R. Phillips, and R. Milo, “SnapShot: key numbers in biology,” Cell, vol. 141, no. 7, p. 1262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Haynes and D. Ron, “The mitochondrial UPR—protecting organelle protein homeostasis,” Journal of Cell Science, vol. 123, no. 22, pp. 3849–3855, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Walter and D. Ron, “The unfolded protein response: from stress pathway to homeostatic regulation,” Science, vol. 334, no. 6059, pp. 1081–1086, 2011. View at Publisher · View at Google Scholar
  6. C. Ma, G. Agrawal, and S. Subramani, “Peroxisome assembly: matrix and membrane protein biogenesis,” Journal of Cell Biology, vol. 193, no. 1, pp. 7–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Ezaki, E. Kominami, and T. Ueno, “Peroxisome degradation in mammals,” IUBMB Life, vol. 63, no. 11, pp. 1001–1008, 2011. View at Publisher · View at Google Scholar
  8. A. von Mikecz, “The nuclear ubiquitin-proteasome system,” Journal of Cell Science, vol. 119, no. 10, pp. 1977–1984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. I. J. Cajigas, T. Will, and E. M. Schuman, “Protein homeostasis and synaptic plasticity,” The EMBO Journal, vol. 29, no. 16, pp. 2746–2752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kong and P. Lasko, “Translational control in cellular and developmental processes,” Nature Reviews Genetics, vol. 13, no. 6, pp. 383–394, 2012.
  11. Y. Bar-Lavan, L. Kosolapov, A. Frumkin, and A. Ben-Zvi, “Regulation of cellular protein quality control networks in a multicellular organism,” FEBS Journal, vol. 279, no. 4, pp. 526–531, 2012. View at Publisher · View at Google Scholar
  12. N. Lane and W. Martin, “The energetics of genome complexity,” Nature, vol. 467, no. 7318, pp. 928–934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. P. M. Douglas and A. Dillin, “Protein homeostasis and aging in neurodegeneration,” Journal of Cell Biology, vol. 190, no. 5, pp. 719–729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. E. T. Powers, R. I. Morimoto, A. Dillin, J. W. Kelly, and W. E. Balch, “Biological and chemical approaches to diseases of proteostasis deficiency,” Annual Review of Biochemistry, vol. 78, pp. 959–991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Cohen, J. Bieschke, R. M. Perciavalle, J. W. Kelly, and A. Dillin, “Opposing activities protect against age-onset proteotoxicity,” Science, vol. 313, no. 5793, pp. 1604–1610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Mehta, K. A. Steinkraus, G. L. Sutphin et al., “Proteasomal regulation of the hypoxic response modulates aging in C. elegans,” Science, vol. 324, no. 5931, pp. 1196–1198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Cohen, J. F. Paulsson, P. Blinder et al., “Reduced IGF-1 signaling delays age-associated proteotoxicity in mice,” Cell, vol. 139, no. 6, pp. 1157–1169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Belle, A. Tanay, L. Bitincka, R. Shamir, and E. K. O'Shea, “Quantification of protein half-lives in the budding yeast proteome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13004–13009, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. K. Doherty, D. E. Hammond, M. J. Clague, S. J. Gaskell, and R. J. Beynon, “Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC,” Journal of Proteome Research, vol. 8, no. 1, pp. 104–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Schwanhüusser, D. Busse, N. Li et al., “Global quantification of mammalian gene expression control,” Nature, vol. 473, no. 7347, pp. 337–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Vogel and E. M. Marcotte, “Insights into the regulation of protein abundance from proteomic and transcriptomic analyses,” Nature Reviews Genetics, vol. 13, no. 4, pp. 227–232, 2012.
  22. J. C. Tran, L. Zamdborg, D. R. Ahlf et al., “Mapping intact protein isoforms in discovery mode using top-down proteomics,” Nature, vol. 480, no. 7376, pp. 254–258, 2011. View at Publisher · View at Google Scholar
  23. J. R. Lipford and R. J. Deshaies, “Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation,” Nature Cell Biology, vol. 5, no. 10, pp. 845–850, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. L. Auld, C. R. Brown, J. M. Casolari, S. Komili, and P. A. Silver, “Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates,” Molecular Cell, vol. 21, no. 6, pp. 861–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. A. Collins and W. P. Tansey, “The proteasome: a utility tool for transcription?” Current Opinion in Genetics and Development, vol. 16, no. 2, pp. 197–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Alvarez-Castelao, I. Martín-Guerrero, A. García-Orad, and J. G. Castaño, “Cytomegalovirus promoter up-regulation is the major cause of increased protein levels of unstable reporter proteins after treatment of living cells with proteasome inhibitors,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28253–28262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Kim, E. J. Bennett, E. L. Huttlin et al., “Systematic and quantitative assessment of the ubiquitin-modified proteome,” Molecular Cell, vol. 44, no. 2, pp. 325–340, 2011. View at Publisher · View at Google Scholar
  28. N. D. Udeshi, D. R. Mani, T. Eisenhaure et al., “Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition,” Molecular & Cellular Proteomics, vol. 11, no. 5, pp. 148–159, 2012. View at Publisher · View at Google Scholar
  29. S. B. Cambridge, F. Gnad, C. Nguyen, J. L. Bermejo, M. Kruger, and M. Mann, “Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover,” Journal of Proteome Research, vol. 10, no. 12, pp. 5275–5284, 2011.
  30. G. L. Semenza, P. H. Roth, H. M. Fang, and G. L. Wang, “Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1,” Journal of Biological Chemistry, vol. 269, no. 38, pp. 23757–23763, 1994. View at Scopus
  31. K. L. Sugars and D. C. Rubinsztein, “Transcriptional abnormalities in Huntington disease,” Trends in Genetics, vol. 19, no. 5, pp. 233–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. W. J. Krzyzosiak, K. Sobczak, M. Wojciechowska, A. Fiszer, A. Mykowska, and P. Kozlowski, “Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target,” Nucleic Acids Research, vol. 40, no. 1, pp. 11–26, 2012. View at Publisher · View at Google Scholar
  33. J. Labbadia, H. Cunliffe, A. Weiss et al., “Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease,” Journal of Clinical Investigation, vol. 121, no. 8, pp. 3306–3319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. P. K. Gokal, A. H. Cavanaugh, and E. A. Thompson Jr., “The effects of cycloheximide upon transcription of rRNA, 5 S RNA, and tRNA genes,” Journal of Biological Chemistry, vol. 261, no. 6, pp. 2536–2541, 1986. View at Scopus
  35. J. M. Kyriakis, P. Banerjee, E. Nikolakaki et al., “The stress-activated protein kinase subfamily of c-jun kinases,” Nature, vol. 369, no. 6476, pp. 156–160, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Cano, C. A. Hazzalin, and L. C. Mahadevan, “Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun,” Molecular and Cellular Biology, vol. 14, no. 11, pp. 7352–7362, 1994. View at Scopus
  37. T. Hunter, “The age of crosstalk: phosphorylation, ubiquitination, and beyond,” Molecular Cell, vol. 28, no. 5, pp. 730–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. H. Glickman and A. Ciechanover, “The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction,” Physiological Reviews, vol. 82, no. 2, pp. 373–428, 2002. View at Scopus
  39. J. Hanna, D. S. Leggett, and D. Finley, “Ubiquitin depletion as a key mediator of toxicity by translational inhibitors,” Molecular and Cellular Biology, vol. 23, no. 24, pp. 9251–9261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Shenkman, S. Tolchinsky, M. Kondratyev, and G. Z. Lederkremer, “Transient arrest in proteasomal degradation during inhibition of translation in the unfolded protein response,” Biochemical Journal, vol. 404, no. 3, pp. 509–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. F. Finn, N. T. Mesires, M. Vine, and J. F. Dice, “Effects of small molecules on chaperone-mediated autophagy,” Autophagy, vol. 1, no. 3, pp. 141–145, 2005. View at Scopus
  42. M. Gossen and H. Bujard, “Tight control of gene expression in mammalian cells by tetracycline-responsive promoters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5547–5551, 1992. View at Publisher · View at Google Scholar · View at Scopus
  43. D. M. Dykxhoorn, C. D. Novina, and P. A. Sharp, “Killing the messenger: short RNAs that silence gene expression,” Nature Reviews Molecular Cell Biology, vol. 4, no. 6, pp. 457–467, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, “Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells,” Journal of Biological Chemistry, vol. 283, no. 35, pp. 23542–23556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. R. Mazzulli, Y. H. Xu, Y. Sun et al., “Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies,” Cell, vol. 146, no. 1, pp. 37–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. R. M. Vabulas and F. U. Hartl, “Cell biology: protein synthesis upon acute nutrient restriction relies on proteasome function,” Science, vol. 310, no. 5756, pp. 1960–1963, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J. W. Yewdell, J. R. Lacsina, M. C. Rechsteiner, and C. V. Nicchitta, “Out with the old, in with the new? Comparing methods for measuring protein degradation,” Cell Biology International, vol. 35, no. 5, pp. 457–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. H. C. S. Yen, Q. Xu, D. M. Chou, Z. Zhao, and S. J. Elledge, “Global protein stability profiling in mammalian cells,” Science, vol. 322, no. 5903, pp. 918–923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Alvarez-Castelao, C. Munoz, I. Sanchez, M. Goethals, J. Vandekerckhove, and J. G. Castano, “Reduced protein stability of human DJ-1/PARK7 L166P, linked to autosomal recessive Parkinson disease, is due to direct endoproteolytic cleavage by the proteasome,” Biochimica et Biophysica Acta, vol. 1823, no. 2, pp. 524–533, 2012. View at Publisher · View at Google Scholar
  50. H. Ren, K. Fu, C. Mu, X. Zhen, and G. Wang, “L166P mutant DJ-1 promotes cell death by dissociating Bax from mitochondrial Bcl-XL,” Molecular Neurodegeneration, vol. 7, article 40, 2012. View at Publisher · View at Google Scholar · View at Scopus