About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2012 (2012), Article ID 895343, 11 pages
http://dx.doi.org/10.1155/2012/895343
Review Article

Potential Role of Peptidylarginine Deiminase Enzymes and Protein Citrullination in Cancer Pathogenesis

1Baker Institute for Animal Health and Department of Biomedical Sciences, Cornell University, Hungerford Hill Road, Ithaca, NY 14853-6401, USA
2Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
3Department of Chemistry, The Scripps Research Institute, FL 33458, USA

Received 29 May 2012; Revised 31 July 2012; Accepted 9 August 2012

Academic Editor: Rolf J. Craven

Copyright © 2012 Sunish Mohanan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. R. Vossenaar, A. J. W. Zendman, W. J. Van Venrooij, and G. J. M. Pruijn, “PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease,” BioEssays, vol. 25, no. 11, pp. 1106–1118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. B. Denman, “PAD: the smoking gun behind arginine methylation signaling?” BioEssays, vol. 27, no. 3, pp. 242–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Anzilotti, F. Pratesi, C. Tommasi, and P. Migliorini, “Peptidylarginine deiminase 4 and citrullination in health and disease,” Autoimmunity Reviews, vol. 9, no. 3, pp. 158–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Chang, R. Yamada, A. Suzuki et al., “Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis,” Rheumatology, vol. 44, no. 1, pp. 40–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Chang and J. Han, “Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors,” Molecular Carcinogenesis, vol. 45, no. 3, pp. 183–196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. E. Jones, C. P. Causey, B. Knuckley, J. L. Slack-Noyes, and P. R. Thompson, “Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential,” Current Opinion in Drug Discovery and Development, vol. 12, no. 5, pp. 616–627, 2009. View at Scopus
  7. M. De Ceuleneer, K. Van Steendam, M. Dhaenens, and D. Deforce, “In vivo relevance of citrullinated proteins and the challenges in their detection,” Proteomics, vol. 12, pp. 752–760, 2012. View at Publisher · View at Google Scholar
  8. S. Chavanas, M. C. Méchin, H. Takahara et al., “Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6,” Gene, vol. 330, no. 1-2, pp. 19–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. E. R. Vossenaar, S. Nijenhuis, M. M. A. Helsen et al., “Citrullination of synovial proteins in murine models of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 48, no. 9, pp. 2489–2500, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. E. Ellsworth, A. Vertrees, B. Love et al., “Chromosomal alterations associated with the transition from in situ to invasive breast cancer,” Annals of Surgical Oncology, vol. 15, no. 9, pp. 2519–2525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Darrah, A. Rosen, J. T. Giles, and F. Andrade, “Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 71, pp. 92–98, 2012. View at Publisher · View at Google Scholar
  12. B. Knuckley, C. P. Causey, J. E. Jones et al., “Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3,” Biochemistry, vol. 49, no. 23, pp. 4852–4863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. B. Pritzker, S. Joshi, G. Harauz, and M. A. Moscarello, “Deimination of myelin basic protein. 2. Effect of methylation of MBP on its deimination by peptidylarginine deiminase,” Biochemistry, vol. 39, no. 18, pp. 5382–5388, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. L. B. Pritzker, S. Joshi, J. J. Gowan, G. Harauz, and M. A. Moscarello, “Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D,” Biochemistry, vol. 39, no. 18, pp. 5374–5381, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Musse, L. Zhen, C. A. Ackerley et al., “Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system,” Disease Models and Mechanisms, vol. 1, no. 4-5, pp. 229–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. E. R. Vossenaar, T. R. D. Radstake, A. Van Der Heijden et al., “Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages,” Annals of the Rheumatic Diseases, vol. 63, no. 4, pp. 373–381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. B. D. Cherrington, E. Morency, A. M. Struble, S. A. Coonrod, and J. J. Wakshlag, “Potential role for peptidylarginine deiminase 2 (PAD2) in citrullination of canine mammary epithelial cell histones,” PLoS ONE, vol. 5, no. 7, Article ID e11768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. B. D. Cherrington, X. Zhang, J. L. McElwee, E. Morency, L. J. Anguish, and S. A. Coonrod, “Potential role for PAD2 in gene regulation in breast cancer cells,” PloS ONE, vol. 7, Article ID e41242, 2012.
  19. X. Zhang, M. Bolt, M. J. Guertin et al., “Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 33, pp. 13331–13336, 2012. View at Publisher · View at Google Scholar
  20. R. Nachat, M. C. Méchin, H. Takahara et al., “Peptidylarginine deiminase isoforms 1–3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin,” Journal of Investigative Dermatology, vol. 124, no. 2, pp. 384–393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Chang and K. Fang, “PADI4 and tumourigenesis,” Cancer Cell International, vol. 10, article 7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Nakashima, T. Hagiwara, and M. Yamada, “Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 49562–49568, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Chang, R. Yamada, T. Sawada, A. Suzuki, Y. Kochi, and K. Yamamoto, “The inhibition of antithrombin by peptidylarginine deiminase 4 may contribute to pathogenesis of rheumatoid arthritis,” Rheumatology, vol. 44, no. 3, pp. 293–298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Ordóñez, I. Martínez-Martínez, F. J. Corrales et al., “Effect of citrullination on the function and conformation of antithrombin,” The FEBS Journal, vol. 276, no. 22, pp. 6763–6772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Ordóñez, J. Yélamos, S. Pedersen et al., “Increased levels of citrullinated antithrombin in plasma of patients with rheumatoid arthritis and colorectal adenocarcinoma determined by a newly developed ELISA using a specific monoclonal antibody,” Thrombosis and Haemostasis, vol. 104, no. 6, pp. 1143–1149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Tanikawa, K. Ueda, H. Nakagawa, N. Yoshida, Y. Nakamura, and K. Matsuda, “Regulation of protein citrullination through p53/PADI4 Network in DNA damage response,” Cancer Research, vol. 69, no. 22, pp. 8761–8769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Guo and W. Fast, “Citrullination of Inhibitor of Growth 4 (ING4) by Peptidylarginine Deminase 4 (PAD4) disrupts the interaction between ING4 and p53,” Journal of Biological Chemistry, vol. 286, no. 19, pp. 17069–17078, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Yao, P. Li, B. J. Venters et al., “Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis,” Journal of Biological Chemistry, vol. 283, no. 29, pp. 20060–20068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Li, H. Yao, Z. Zhang et al., “Regulation of p53 target gene expression by peptidylarginine deiminase 4,” Molecular and Cellular Biology, vol. 28, no. 15, pp. 4745–4758, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Zhang, M. J. Gamble, S. Stadler et al., “Genome-Wide analysis reveals PADI4 cooperates with Elk-1 to activate C-Fos expression in breast cancer cells,” PLoS Genetics, vol. 7, no. 6, Article ID e1002112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Wang, M. Li, S. Stadler et al., “Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation,” Journal of Cell Biology, vol. 184, no. 2, pp. 205–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Tanikawa, M. Espinosa, A. Suzuki et al., “Regulation of histone modification and chromatin structure by the p53-PADI4 pathway,” Nature Communications, vol. 3, article 676, 2012. View at Publisher · View at Google Scholar
  33. H. L. Rust and P. R. Thompson, “Kinase consensus sequences: a breeding ground for crosstalk,” ACS Chemical Biology, vol. 6, pp. 881–892, 2011. View at Publisher · View at Google Scholar
  34. P. Li, D. Wang, H. Yao et al., “Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression,” Oncogene, vol. 29, no. 21, pp. 3153–3162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Yurttas, A. M. Vitale, R. J. Fitzhenry et al., “Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo,” Development, vol. 135, no. 15, pp. 2627–2636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. N. Stacey, D. F. Gudbjartsson, P. Sulem et al., “Common variants on 1p36 and 1q42 are associated with cutaneous basal cell carcinoma but not with melanoma or pigmentation traits,” Nature Genetics, vol. 40, no. 11, pp. 1313–1318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Yurttas, E. Morency, and S. A. Coonrod, “Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition,” Reproduction, vol. 139, no. 5, pp. 809–823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Li, P. Zheng, and J. Dean, “Maternal control of early mouse development,” Development, vol. 137, no. 6, pp. 859–870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Senshu, K. Akiyama, S. Nagata, K. Watanabe, and K. Hikichi, “Peptidylarginine deiminase in rat pituitary: sex difference, estrous cycle-related changes, and estrogen dependence,” Endocrinology, vol. 124, no. 6, pp. 2666–2670, 1989. View at Scopus
  40. H. Takahara, M. Tsuchida, M. Kusubata, K. Akutsu, and S. K. Tagami Sugawara, “Peptidylarginine deiminase of the mouse. Distribution, properties, and immunocytochemical localization,” Journal of Biological Chemistry, vol. 264, no. 22, pp. 13361–13368, 1989. View at Scopus
  41. K. Watanabe, M. Nomoto, S. Nagata et al., “The rat peptidylarginine deiminase-encoding gene: structural analysis and the 5'-flanking sequence,” Gene, vol. 114, no. 2, pp. 261–265, 1992. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Nagata, T. Uehara, K. Inoue, and T. Senshu, “Increased peptidylarginine deiminase expression during induction of prolactin biosynthesis in a growth-hormone-producing rat pituitary cell line, MtT/S,” Journal of Cellular Physiology, vol. 150, no. 2, pp. 426–432, 1992. View at Scopus
  43. T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: archive for high-throughput functional genomic data,” Nucleic Acids Research, vol. 37, no. 1, pp. D885–D890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. C. Hewitt, B. J. Deroo, K. Hansen et al., “Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen,” Molecular Endocrinology, vol. 17, no. 10, pp. 2070–2083, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Takahara, M. Kusubata, M. Tsuchida, T. Kohsaka, S. Tagami, and K. Sugawara, “Expression of peptidylarginine deiminase in the uterine epithelial cells of mouse is dependent on estrogen,” Journal of Biological Chemistry, vol. 267, no. 1, pp. 520–525, 1992. View at Scopus
  46. S. Horibata, S. A. Coonrod, and B. D. Cherrington, “Role for peptidylarginine deiminase enzymes in disease and female reproduction,” The Journal of Reproduction and Development, vol. 58, pp. 274–282, 2012. View at Publisher · View at Google Scholar
  47. S. Dong, Z. Zhang, and H. Takahara, “Estrogen-enhanced peptidylarginine deiminase type IV gene (PADI4) expression in MCF-7 cells is mediated by estrogen receptor-α-promoted transfactors activator protein-1, nuclear factor-Y, and Sp1,” Molecular Endocrinology, vol. 21, no. 7, pp. 1617–1629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Wang, J. Wysocka, J. Sayegh et al., “Human PAD4 regulates histone arginine methylation levels via demethylimination,” Science, vol. 306, no. 5694, pp. 279–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. A. A. Chumanevich, C. P. Causey, B. A. Knuckley et al., “Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor,” American Journal of Physiology, vol. 300, no. 6, pp. G929–G938, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. L. R. Tait, R. J. Pauley, S. J. Santner et al., “Dynamic stromal-epithelial interactions during progression of MCF10DCIS.com xenografts,” International Journal of Cancer, vol. 120, no. 10, pp. 2127–2134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. F. R. Miller, S. J. Santner, L. Tait, and P. J. Dawson, “MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ,” Journal of the National Cancer Institute, vol. 92, no. 14, pp. 1185–1186, 2000. View at Scopus
  52. L. Wang, X. Chang, G. Yuan, Y. Zhao, and P. Wang, “Expression of peptidylarginine deiminase type 4 in ovarian tumors,” International Journal of Biological Sciences, vol. 6, no. 5, pp. 454–464, 2010. View at Scopus
  53. X. Chang, J. Han, L. Pang, Y. Zhao, Y. Yang, and Z. Shen, “Increased PADI4 expression in blood and tissues of patients with malignant tumors,” BMC Cancer, vol. 9, article 40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. B. D. Cherrington, S. Mohanan, A. N. Diep et al., “Comparative analysis of peptidylarginine deiminase-2 expression in canine, feline and human mammary tumours,” Journal of Comparative Pathology, vol. 147, pp. 139–146, 2012. View at Publisher · View at Google Scholar
  55. J. L. Slack, C. P. Causey, and P. R. Thompson, “Protein arginine deiminase 4: a target for an epigenetic cancer therapy,” Cellular and Molecular Life Sciences, vol. 68, no. 4, pp. 709–720, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Luo, K. Arita, M. Bhatia et al., “Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization,” Biochemistry, vol. 45, no. 39, pp. 11727–11736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Luo, B. Knuckley, Y. H. Lee, M. R. Stallcup, and P. R. Thompson, “A fluoroacetamidine-based inactivator of protein arginine deiminase 4: design, synthesis, and in vitro and in vivo evaluation,” Journal of the American Chemical Society, vol. 128, no. 4, pp. 1092–1093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Knuckley, Y. Luo, and P. R. Thompson, “Profiling Protein Arginine Deiminase 4 (PAD4): a novel screen to identify PAD4 inhibitors,” Bioorganic and Medicinal Chemistry, vol. 16, no. 2, pp. 739–745, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Wang, P. Li, S. Wang et al., “Anticancer PAD inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity,” The Journal of Biological Chemistry, vol. 287, pp. 25941–25953, 2012. View at Publisher · View at Google Scholar
  60. C. W. Van, M. G. Alison, K. B. Nirmal et al., “N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis,” Journal of Immunology, vol. 186, no. 7, pp. 4396–4404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. B. L. Pierce, M. L. Neuhouser, M. H. Wener et al., “Correlates of circulating C-reactive protein and serum amyloid A concentrations in breast cancer survivors,” Breast Cancer Research and Treatment, vol. 114, no. 1, pp. 155–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. O. I. Ahmed, A. M. Adel, D. R. Diab, and N. S. Gobran, “Prognostic value of serum level of interleukin-6 and interleukin-8 in metastatic breast cancer patients,” The Egyptian Journal of Immunology, vol. 13, no. 2, pp. 61–68, 2006. View at Scopus
  63. T. Bachelot, I. Ray-Coquard, C. Menetrier-Caux, M. Rastkha, A. Duc, and J. Y. Blay, “Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients,” British Journal of Cancer, vol. 88, no. 11, pp. 1721–1726, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. S. W. Cole, “Chronic inflammation and breast cancer recurrence,” Journal of Clinical Oncology, vol. 27, no. 21, pp. 3418–3419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Salgado, S. Junius, I. Benoy et al., “Circulating interleukin-6 predicts survival in patients with metastatic breast cancer,” International Journal of Cancer, vol. 103, no. 5, pp. 642–646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. G. J. Zhang and I. Adachi, “Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma,” Anticancer Research, vol. 19, no. 2, pp. 1427–1432, 1999. View at Scopus
  67. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. I. J. Fidler, “The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited,” Nature Reviews Cancer, vol. 3, no. 6, pp. 453–458, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. I. Auger, C. Charpin, N. Balandraud, M. Martin, and J. Roudier, “Autoantibodies to PAD4 and BRAF in rheumatoid arthritis,” Autoimmunity Reviews, vol. 11, no. 11, pp. 801–803, 2012. View at Publisher · View at Google Scholar
  70. M. Saffarzadeh, C. Juenemann, M. A. Queisser et al., “Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones,” PloS ONE, vol. 7, Article ID e32366, 2012.
  71. C. L. Liu, S. Tangsombatvisit, J. M. Rosenberg et al., “Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies,” Arthritis Research & Therapy, vol. 14, article R25, 2012.
  72. B. Amulic and G. Hayes, “Neutrophil extracellular traps,” Current Biology, vol. 21, no. 9, pp. R297–R298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Li, M. Li, M. R. Lindberg, M. J. Kennett, N. Xiong, and Y. Wang, “PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps,” Journal of Experimental Medicine, vol. 207, no. 9, pp. 1853–1862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Fan, D. He, Q. Wang et al., “Citrullinated vimentin stimulates proliferation, pro-inflammatory cytokine secretion, and PADI4 and RANKL expression of fibroblast-like synoviocytes in rheumatoid arthritis,” Scandinavian Journal of Rheumatology. In press.
  75. H. J. Lee, M. Joo, R. Abdolrasulnia et al., “Peptidylarginine deiminase 2 suppresses inhibitory κB kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages,” Journal of Biological Chemistry, vol. 285, no. 51, pp. 39655–39662, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Ruiz-Esquide, M. J. Gomara, V. I. Peinado et al., “Anti-citrullinated peptide antibodies in the serum of heavy smokers without rheumatoid arthritis. A differential effect of chronic obstructive pulmonary disease?” Clinical Rheumatology, vol. 31, pp. 1047–1050, 2012. View at Publisher · View at Google Scholar
  77. O. Kilsgard, P. Andersson, M. Malmsten et al., “Peptidylarginine deiminases present in the airways during tobacco smoking and inflammation can citrullinate the host defense peptide LL-37, resulting in altered activities,” American Journal of Respiratory Cell and Molecular Biology, vol. 46, pp. 240–248, 2012. View at Publisher · View at Google Scholar
  78. D. Makrygiannakis, E. Af Klint, I. E. Lundberg et al., “Citrullination is an inflammation-dependent process,” Annals of the Rheumatic Diseases, vol. 65, no. 9, pp. 1219–1222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Coudane, M. C. Mechin, A. Huchenq et al., “Deimination and expression of peptidylarginine deiminases during cutaneous wound healing in mice,” European Journal of Dermatology, vol. 21, no. 3, pp. 376–384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Mortier, M. Gouwy, J. Van Damme, and P. Proost, “Effect of posttranslational processing on the in vitro and in vivo activity of chemokines,” Experimental Cell Research, vol. 317, no. 5, pp. 642–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Proost, T. Loos, A. Mortier et al., “Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 2085–2097, 2008. View at Publisher · View at Google Scholar · View at Scopus