About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2013 (2013), Article ID 189430, 6 pages
http://dx.doi.org/10.1155/2013/189430
Research Article

Risk of Cardiovascular Diseases in Diabetes Mellitus and Serum Concentration of Asymmetrical Dimethylarginine

1Department of Biochemistry, Sree Narayana Institute of Medical Sciences, Chalakka, Ernakulam, Kerala, India
2Department of Biochemistry, ACPM Medical College, Dhule, Maharashtra, India
3Department of Biochemistry, Panjabrao Deshmukh Medical College, Amravati, Maharashtra, India

Received 2 July 2013; Revised 25 August 2013; Accepted 25 August 2013

Academic Editor: R. J. Linhardt

Copyright © 2013 Seema L. Jawalekar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Candido, P. Srivastava, M. E. Cooper, and L. M. Burrell, “Diabetes mellitus: a cardiovascular disease,” Current Opinion in Investigational Drugs, vol. 4, no. 9, pp. 1088–1094, 2003. View at Scopus
  2. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, “Report of the expert committee on the diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 22, supplement 1, pp. S5–S19, 1999. View at Publisher · View at Google Scholar
  3. A. D. Mooradian, “Cardiovascular disease in type 2 diabetes mellitus: current management guidelines,” Archives of Internal Medicine, vol. 163, no. 1, pp. 33–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Miyazaki, H. Matsuoka, J. P. Cooke et al., “Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis,” Circulation, vol. 99, no. 9, pp. 1141–1146, 1999. View at Scopus
  5. V. Schächinger, M. B. Britten, and A. M. Zeiher, “Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease,” Circulation, vol. 101, no. 16, pp. 1899–1906, 2000. View at Scopus
  6. J. A. Suwaidi, S. Hamasaki, S. T. Higano, R. A. Nishimura, D. R. Holmes Jr., and A. Lerman, “Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction,” Circulation, vol. 101, no. 9, pp. 948–954, 2000. View at Scopus
  7. C. Nielson and T. Lange, “Blood glucose and heart failure in nondiabetic patients,” Diabetes Care, vol. 28, no. 3, pp. 607–611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Tesfamariam, M. L. Brown, and R. A. Cohen, “15-Hydroxyeicosatetraenoic acid and diabetic endothelial dysfunction in rabbit aorta,” Journal of Cardiovascular Pharmacology, vol. 25, no. 5, pp. 748–755, 1995. View at Scopus
  9. J. P. Cooke and V. J. Dzau, “Nitric oxide synthase: role in the genesis of vascular disease,” Annual Review of Medicine, vol. 48, pp. 489–509, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Cooke, “Does ADMA cause endothelial dysfunction?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 9, pp. 2032–2037, 2000. View at Scopus
  11. J. T. Kielstein, R. H. Böger, S. M. Bode-Böger et al., “Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: relationship to treatment method and atherosclerotic disease,” Journal of the American Society of Nephrology, vol. 10, no. 3, pp. 594–600, 1999. View at Scopus
  12. C. Zoccali, S. M. Bode-Böger, F. Mallamaci et al., “Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study,” Lancet, vol. 358, no. 9299, pp. 2113–2117, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Dayoub, V. Achan, S. Adimoolam et al., “Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence,” Circulation, vol. 108, no. 24, pp. 3042–3047, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Klatt, K. Schmidt, G. Uray, and B. Mayer, “Multiple catalytic functions of brain nitric oxide synthase,” Journal of Biological Chemistry, vol. 268, no. 20, pp. 14781–14787, 1993.
  15. J. Vásquez-Vivar, B. Kalyanaraman, P. Martásek et al., “Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9220–9225, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. K. A. Pritchard Jr., L. Groszek, D. M. Smalley et al., “Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion,” Circulation Research, vol. 77, no. 3, pp. 510–518, 1995. View at Scopus
  17. R. H. Böger, S. M. Bode-Böger, A. Szuba et al., “Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia,” Circulation, vol. 98, no. 18, pp. 1842–1847, 1998. View at Scopus
  18. M. C. Stühlinger, P. S. Tsao, J. H. Her, M. Kimoto, R. F. Balint, and J. P. Cooke, “Homocysteine impairs the nitric oxide synthase pathway role of asymmetric dimethylarginine,” Circulation, vol. 104, no. 21, pp. 2569–2575, 2001. View at Scopus
  19. A. Fard, C. H. Tuck, J. A. Donis et al., “Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 9, pp. 2039–2044, 2000. View at Scopus
  20. A. Ito, P. S. Tsao, S. Adimoolam, M. Kimoto, T. Ogawa, and J. P. Cooke, “Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase,” Circulation, vol. 99, no. 24, pp. 3092–3095, 1999. View at Scopus
  21. L. A. Powell, S. M. Nally, D. McMaster, M. A. Catherwood, and E. R. Trimble, “Restoration of glutathione levels in vascular smooth muscle cells exposed to high glucose conditions,” Free Radical Biology and Medicine, vol. 31, no. 10, pp. 1149–1155, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. W. C. Duckworth, “Hyperglycemia and cardiovascular disease,” Current Atherosclerosis Reports, vol. 3, no. 5, pp. 383–391, 2001.
  23. F. Schulze, R. Wesemann, E. Schwedhelm et al., “Determination of asymmetric dimethylarginine (ADMA) using a novel ELISA assay,” Clinical Chemistry and Laboratory Medicine, vol. 42, no. 12, pp. 1377–1383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. N. K. Cortas and N. W. Wakid, “Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method,” Clinical Chemistry, vol. 36, no. 8, pp. 1440–1443, 1990. View at Scopus
  25. F. Abbasi, T. Asagmi, J. P. Cooke et al., “Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus,” American Journal of Cardiology, vol. 88, no. 10, pp. 1201–1203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. Stühlinger, F. Abbasi, J. W. Chu et al., “Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor,” Journal of the American Medical Association, vol. 287, no. 11, pp. 1420–1426, 2002. View at Scopus
  27. M. C. Stühlinger, R. K. Oka, E. E. Graf et al., “Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine,” Circulation, vol. 108, no. 8, pp. 933–938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Kawano, T. Motoyama, O. Hirashima et al., “Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery,” Journal of the American College of Cardiology, vol. 34, no. 1, pp. 146–154, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Cosentino, K. Hishikawa, Z. S. Katusic, and T. F. Lüscher, “High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells,” Circulation, vol. 96, no. 1, pp. 25–28, 1997. View at Scopus
  30. N. N. Chan, P. Vallance, and H. M. Colhoun, “Endothelium-dependent and -independent vascular dysfunction in type 1 diabetes: role of conventional risk factors, sex, and glycemic control,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 6, pp. 1048–1054, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Y. Lin, A. Ito, T. Asagami et al., “Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase,” Circulation, vol. 106, no. 8, pp. 987–992, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. I. Worthley, A. S. Holmes, S. R. Willoughby et al., “The deleterious effects of hyperglycemia on platelet function in diabetic patients with acute coronary syndromes mediation by superoxide production, resolution with intensive insulin administration,” Journal of the American College of Cardiology, vol. 49, no. 3, pp. 304–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Yasuda, S. Miyazaki, M. Kanda et al., “Intensive treatment of risk factors in patients with type-2 diabetes mellitus is associated with improvement of endothelial function coupled with a reduction in the levels of plasma asymmetric dimethylarginine and endogenous inhibitor of nitric oxide synthase,” European Heart Journal, vol. 27, no. 10, pp. 1159–1165, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Creager, S. J. Gallagher, X. J. Girerd, S. M. Coleman, V. J. Dzau, and J. P. Cooke, “L-Arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans,” Journal of Clinical Investigation, vol. 90, no. 4, pp. 1248–1253, 1992. View at Scopus
  35. R. H. Boger and S. M. Bode-Boger, “Asymmetric dimethylarginine, derangements of the endothelial nitric oxide synthase pathway, and cardiovascular diseases,” Seminars in Thrombosis and Hemostasis, vol. 26, no. 5, pp. 539–545, 2000. View at Scopus
  36. J. R. Chan, R. H. Böger, S. M. Bode-Böger et al., “Asymmetric dimethylarginine increases mononuclear cell adhesiveness in hypercholesterolemic humans,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 4, pp. 1040–1046, 2000. View at Publisher · View at Google Scholar
  37. R. H. Böger, K. Sydow, J. Borlak et al., “LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases,” Circulation Research, vol. 87, no. 2, pp. 99–105, 2000. View at Scopus
  38. A. Fard, C. H. Tuck, J. A. Donis et al., “Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 9, pp. 2039–2044, 2000. View at Publisher · View at Google Scholar
  39. A. Surdacki, M. Nowicki, J. Sandmann et al., “Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension,” Journal of Cardiovascular Pharmacology, vol. 33, no. 4, pp. 652–658, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Sato, H. Masuda, S. Tamaoki et al., “Endogenous asymmetrical dimethylarginine and hypertension associated with puromycin nephrosis in the rat,” British Journal of Pharmacology, vol. 125, no. 3, pp. 469–476, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. R. J. Nijveldt, T. Teerlink, M. P. C. Siroen, A. A. Van Lambalgen, J. A. Rauwerda, and P. A. M. Van Leeuwen, “The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA),” Clinical Nutrition, vol. 22, no. 1, pp. 17–22, 2003. View at Publisher · View at Google Scholar · View at Scopus