About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2013 (2013), Article ID 251474, 11 pages
http://dx.doi.org/10.1155/2013/251474
Research Article

Genetic Basis for Variation of Metalloproteinase-Associated Biochemical Activity in Venom of the Mojave Rattlesnake (Crotalus scutulatus scutulatus)

1Pharmacology Department, University of Nevada School of Medicine, Manville Building 19A, Reno, NV 89557, USA
2Science Department, Tashkent Ulugbek International School, 5-A J. Shoshiy Street, 100100 Tashkent, Uzbekistan
3Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA

Received 26 April 2013; Accepted 25 June 2013

Academic Editor: R. J. Linhardt

Copyright © 2013 Ruben K. Dagda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. S. Markland, “Rattlesnake venom enzymes that interact with components of the hemostatic system,” Journal of Toxicology, vol. 2, no. 2, pp. 119–160, 1983. View at Scopus
  2. O. Molina, R. K. Seriel, M. Martinez, M. L. Sierra, A. Varela-Ramirez, and E. D. Rael, “Isolation of two hemorrhagic toxins from Crotalus basiliscus basiliscus (mexican west coast rattlesnake) venom and their effect on blood clotting and complement,” International Journal of Biochemistry, vol. 22, no. 3, pp. 253–261, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. E. D. Rael, C. S. Lieb, N. Maddux, A. Varela-Ramirez, and J. Perez, “Hemorrhagic and Mojave toxins in the venoms of the offspring of two Mojave rattlesnakes (Crotalus scutulatus scutulatus),” Comparative Biochemistry and Physiology B, vol. 106, no. 3, pp. 595–600, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. E. D. Rael, J. Z. Rivas, T. Chen, N. Maddux, E. Huizar, and C. S. Lieb, “Differences in fibrinolysis and complement inactivation by venom from different northern blacktailed rattlesnakes (Crotalus molossus molossus),” Toxicon, vol. 35, no. 4, pp. 505–513, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Chen and E. D. Rael, “Purification of M5, a fibrinolytic proteinase from Crotalus molossus molossus venom that attacks complement,” International Journal of Biochemistry and Cell Biology, vol. 29, no. 5, pp. 789–799, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. E. D. Rael, M. Martinez, and O. Molina, “Isolation of a fibrinolytic protease, M4, from venom of Crotalus molossus molossus (Northern blacktail rattlesnake),” Haemostasis, vol. 22, no. 1, pp. 41–49, 1992. View at Scopus
  7. L. A. Hite, L.-G. Jia, J. B. Bjarnason, and J. W. Fox, “cDNA sequences for four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins,” Archives of Biochemistry and Biophysics, vol. 308, no. 1, pp. 182–191, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Jia, X. Wang, J. D. Shannon, J. B. Bjarnason, and J. W. Fox, “Function of disintegrin-like/cysteine-rich domains of atrolysin A. Inhibition of platelet aggregation by recombinant protein and peptide antagonists,” Journal of Biological Chemistry, vol. 272, no. 20, pp. 13094–13102, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Gutiérrez and A. Rucavado, “Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage,” Biochimie, vol. 82, no. 9-10, pp. 841–850, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. L. G. Jia, X. Wang, J. D. Shannon, J. B. Bjarnason, and J. W. Fox, “Inhibition of platelet aggregation by the recombinant cysteine-rich domain of the hemorrhagic snake venom metalloproteinase, atrolysin A,” Archives of Biochemistry and Biophysics, vol. 373, no. 1, pp. 281–286, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Zhou, P. Hu, M. R. Ritter et al., “Molecular cloning and functional expression of contortrostatin, a homodimeric disintegrin from southern copperhead snake venom,” Archives of Biochemistry and Biophysics, vol. 375, no. 2, pp. 278–288, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. J. B. Bjarnason and J. W. Fox, “Hemorrhagic metalloproteinases from snake venoms,” Pharmacology and Therapeutics, vol. 62, no. 3, pp. 325–372, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Shimokawa, L. Jia, X. Wang, and J. W. Fox, “Expression, activation, and processing of the recombinant snake venom metalloproteinase, Pro-atrolysin E,” Archives of Biochemistry and Biophysics, vol. 335, no. 2, pp. 283–294, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Anaya, E. D. Rael, C. S. Lieb, J. C. Perez, and R. J. Salo, “Antibody detection of venom protein variation within a population of prairie rattlesnake Crotalus v. viridis,” Journal of Herpetology, no. 26, pp. 473–482, 1992.
  15. J. L. Glenn and R. Straight, “Mojave rattlesnake Crotalus scutulatus scutulatus venom: variation in toxicity with geographical origin,” Toxicon, vol. 16, no. 1, pp. 81–84, 1978. View at Scopus
  16. J. L. Glenn, R. C. Straight, M. C. Wolfe, and D. L. Hardy, “Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties,” Toxicon, vol. 21, no. 1, pp. 119–130, 1983. View at Publisher · View at Google Scholar · View at Scopus
  17. L. G. Jia, K. Shimokawa, J. B. Bjarnason, and J. W. Fox, “Snake venom metalloproteinaes: structure, function and relationship to the adams family of proteins,” Toxicon, vol. 34, no. 11-12, pp. 1269–1276, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. B. J. Wooldridge, G. Pineda, J. J. Banuelas-Ornelas et al., “Mojave rattlesnakes (Crotalus scutulatus scutulatus) lacking the acidic subunit DNA sequence lack Mojave toxin in their venom,” Comparative Biochemistry and Physiology B, vol. 130, no. 2, pp. 169–179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. W. J. French, W. K. Hayes, S. P. Bush, M. D. Cardwell, J. O. Bader, and E. D. Rael, “Mojave toxin in venom of Crotalus helleri (Southern Pacific Rattlesnake): molecular and geographic characterization,” Toxicon, vol. 44, no. 7, pp. 781–791, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. Massey, J. J. Calvete, E. E. Sánchez et al., “Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona,” Journal of Proteomics, vol. 75, no. 9, pp. 2576–2587, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. L. A. Hite, J. W. Fox, and J. B. Bjarnason, “A new family of proteinases is defined by several snake venom metalloproteinases,” Biological Chemistry Hoppe-Seyler, vol. 373, no. 7, pp. 381–385, 1992. View at Scopus
  22. O. Zhou, B. J. Smith, and M. H. Grossman, “Molecular cloning and expression of catrocollastatin, a snake-venom protein from Crotalus atrox (western diamondback rattlesnake) which inhibits platelet adhesion to collagen,” Biochemical Journal, vol. 307, no. 2, pp. 411–417, 1995. View at Scopus
  23. M. Martinez, E. D. Rael, and N. L. Maddux, “Isolation of a hemorrhagic toxin from mojave rattlesnake (Crotalus scutulatus scutulatus) venom,” Toxicon, vol. 28, no. 6, pp. 685–694, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. R. A. Martinez, S. Y. Huang, and J. C. Perez, “Antigenic relationships of fractionated western diamondback rattlesnake (Crotalus atrox) hemorrhagic toxins and other rattlesnake venoms as indicated by monoclonal antibodies,” Toxicon, vol. 27, no. 2, pp. 239–245, 1989. View at Scopus
  25. E. D. Rael and L. P. Jones, “Isolation of an anticomplement factor from the venom of the Mojave rattlesnake (Crotalus scutulatus scutulatus),” Toxicon, vol. 21, no. 1, pp. 57–65, 1983. View at Publisher · View at Google Scholar · View at Scopus
  26. J. B. Bjarnason and A. T. Tu, “Hemorrhagic toxins from western diamondback rattlesnake (Crotalus atrox) venom: isolation and characterization of five toxins and the role of zinc in hemorrhagic toxin,” Biochemistry, vol. 17, no. 16, pp. 3395–3404, 1978. View at Scopus
  27. J. G. Soto, J. C. Perez, M. M. Lopez, et al., “Comparative enzymatic study of HPLC-fractionated Crotalus venoms,” Comparative Biochemistry and Physiology B, vol. 93, no. 4, pp. 847–855, 1989.
  28. S. Y. Huang, J. C. Perez, E. D. Rael, C. Lieb, M. Martinez, and S. A. Smith, “Variation in the antigenic characteristics of venom from the Mojave rattlesnake (Crotalus scutulatus scutulatus),” Toxicon, vol. 30, no. 4, pp. 387–396, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. M. W. Schwartz and A. L. Bieber, “Characterization of two arginine ester hydrolases from Mojave rattlesnake (Crotalus scutulatus scutulatus) venom,” Toxicon, vol. 23, no. 2, pp. 255–269, 1985. View at Scopus
  30. A. H. Henschen-Edman, I. Theodor, B. F. P. Edwards, and H. Pirkle, “Crotalase, a fibrinogen-clotting snake venom enzyme: primary structure and evidence for a fibrinogen recognition exosite different from thrombin,” Thrombosis and Haemostasis, vol. 81, no. 1, pp. 81–86, 1999. View at Scopus
  31. H. de Araujo and C. Ownby, “Molecular cloning and sequence analysis of cDNAs for metalloproteinases from broad-banded copperhead Agkistrodon contortrix laticinctus,” Archives of Biochemistry and Biophysics, vol. 320, no. 1, pp. 141–148, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Jia, B. A. Cantu, E. E. Sánchez, and J. C. Pérez, “Complementary DNA sequencing and identification of mRNAs from the venomous gland of Agkistrodon piscivorus leucostoma,” Toxicon, vol. 51, no. 8, pp. 1457–1466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Jia and J. C. Pérez, “Molecular cloning and characterization of cDNAs encoding metalloproteinases from snake venom glands,” Toxicon, vol. 55, no. 2-3, pp. 462–469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. H. E. Van Wart and H. Birkedal-Hansen, “The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 14, pp. 5578–5582, 1990. View at Publisher · View at Google Scholar · View at Scopus
  35. L. A. Hite, J. D. Shannon, J. B. Bjarnason, and J. W. Fox, “Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for signal, zymogen, and disintegrin-like structures,” Biochemistry, vol. 31, no. 27, pp. 6203–6211, 1992. View at Scopus
  36. J. B. Bjarnason and J. W. Fox, “Hemorrhagic metalloproteinases from snake venoms,” Pharmacology and Therapeutics, vol. 62, no. 3, pp. 325–372, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Maeda and O. Smithies, “The evolution of multigene families: human haptoglobin genes,” Annual Review of Genetics, vol. 20, pp. 81–108, 1986. View at Scopus
  38. K. Nakashima, I. Nobuhisa, M. Deshimaru et al., “Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 12, pp. 5605–5609, 1995. View at Publisher · View at Google Scholar · View at Scopus