About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2013 (2013), Article ID 914540, 16 pages
http://dx.doi.org/10.1155/2013/914540
Research Article

Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes

1Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Street 8, 30-239 Cracow, Poland
2UMR 7565 CNRS SRSMC, Université de Lorraine, Faculté des Sciences et Technologies, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
3Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland

Received 27 June 2013; Revised 27 August 2013; Accepted 27 August 2013

Academic Editor: Vladimir Uversky

Copyright © 2013 Wanda Barzyk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Zasloff, “Antimicrobial peptides of multicellular organisms,” Nature, vol. 415, pp. 389–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Giuliani, G. Pirri, and S. F. Nicoletto, “Antimicrobial peptides: an overview of a promising class of therapeutics,” Central European Journal of Biology, vol. 2, no. 1, pp. 1–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Wang, X. Li, and Z. Wang, “APD2: the updated antimicrobial peptide database and its application in peptide design,” Nucleic Acids Research, vol. 37, supplement 1, pp. D933–D937, 2009. View at Publisher · View at Google Scholar
  4. D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1778, no. 2, pp. 357–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Matsuzaki, “Control of cell selectivity of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1788, no. 8, pp. 1687–1692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Matsuzaki, K.-I. Sugishita, N. Fujii, and K. Miyajima, “Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2,” Biochemistry, vol. 34, no. 10, pp. 3423–3429, 1995. View at Scopus
  7. R. E. W. Hancock and H.-G. Sahl, “Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies,” Nature Biotechnology, vol. 24, no. 12, pp. 1551–1557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Lohner, “New strategies for novel antibiotics: peptides targeting bacterial cell membranes,” General Physiology and Biophysics, vol. 28, no. 2, pp. 105–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Lohner and F. Prossnigg, “Biological activity and structural aspects of PGLa interaction with membrane mimetic systems,” Biochimica et Biophysica Acta, vol. 1788, no. 8, pp. 1656–1666, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Y. Yount, A. S. Bayer, Y. Q. Xiong, and M. R. Yeaman, “Advances in antimicrobial peptide immunobiology,” Biopolymers, vol. 84, no. 5, pp. 435–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Yeaman and N. Y. Yount, “Mechanisms of antimicrobial peptide action and resistance,” Pharmacological Reviews, vol. 55, no. 1, pp. 27–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. H. W. Huang, “Molecular mechanism of antimicrobial peptides: the origin of cooperativity,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1292–1302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Sato and J. B. Feix, “Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1245–1256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. A. Brogden, “Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?” Nature Reviews Microbiology, vol. 3, no. 3, pp. 238–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Papo and Y. Shai, “Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes?” Peptides, vol. 24, no. 11, pp. 1693–1703, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Shai, “Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 55–70, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Sitaram and R. Nagaraj, “The therapeutic potential of host-defense antimicrobial peptides,” Current Drug Targets, vol. 3, no. 3, pp. 259–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Sitaram and R. Nagaraj, “Host-defense antimicrobial peptides: importance of structure for activity,” Current Pharmaceutical Design, vol. 8, no. 9, pp. 727–742, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Sitaram and R. Nagaraj, “Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 29–54, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. S. E. Blondelle, K. Lohner, and M.-I. Aguilar, “Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 89–108, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Epand and H. J. Vogel, “Diversity of antimicrobial peptides and their mechanisms of action,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 11–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. E. F. Haney, H. N. Hunter, K. Matsuzaki, and H. J. Vogel, “Solution NMR studies of amphibian antimicrobial peptides: linking structure to function?” Biochimica et Biophysica Acta, vol. 1788, no. 8, pp. 1639–1655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Thennarasu, R. Huang, D.-K. Lee et al., “Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367,” Biochemistry, vol. 49, no. 50, pp. 10595–10605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Hernández-Ledesma, I. Recio, and L. Amigo, “β-Lactoglobulin as source of bioactive peptides,” Amino Acids, vol. 35, no. 2, pp. 257–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Pellegrini, “Antimicrobial peptides from food proteins,” Current Pharmaceutical Design, vol. 9, no. 16, pp. 1225–1238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Pellegrini, U. Thomas, N. Bramaz, P. Hunziker, and R. Von Fellenberg, “Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule,” Biochimica et Biophysica Acta, vol. 1426, no. 3, pp. 439–448, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. I. López-Expósito, L. Amigo, and I. Recio, “Identification of the initial binding sites of αs2-casein f(183–207) and effect on bacterial membranes and cell morphology,” Biochimica et Biophysica Acta, vol. 1778, no. 10, pp. 2444–2449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Recio and I. López-Expósito, “Protective effect of milk peptides: antibacterial and antitumor properties,” Advances in Experimental Medicine and Biology, vol. 606, pp. 271–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. I. López Expósito and I. Recio, “Antibacterial activity of peptides and folding variants from milk proteins,” International Dairy Journal, vol. 16, no. 11, pp. 1294–1305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. I. López-Expósito, F. Minervini, L. Amigo, and I. Recio, “Identification of antibacterial peptides from bovine κ-casein,” Journal of Food Protection, vol. 69, no. 12, pp. 2992–2997, 2006. View at Scopus
  31. I. Recio and S. Visser, “Identification of two distinct antibacterial domains within the sequence of bovine α(s2)-casein,” Biochimica et Biophysica Acta, vol. 1428, no. 2-3, pp. 314–326, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Campagna, A.-G. Mathot, Y. Fleury, J.-M. Girardet, and J.-L. Gaillard, “Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose peptone,” Journal of Dairy Science, vol. 87, no. 6, pp. 1621–1626, 2004. View at Scopus
  33. S. Campagna, P. Cosette, G. Molle, and J.-L. Gaillard, “Evidence for membrane affinity of the C-terminal domain of bovine milk PP3 component,” Biochimica et Biophysica Acta, vol. 1513, no. 2, pp. 217–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Campagna, N. Van Mau, F. Heitz, G. Humbert, and J.-L. Gaillard, “Specific interaction between anionic phospholipids and milk bovine component PP3 and its 119-135 C-terminal fragment,” Colloids and Surfaces B, vol. 13, no. 6, pp. 299–309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Benkerroum, “Antimicrobial peptides generated from milk proteins: a survey and prospects for application in the food industry. A review,” International Journal of Dairy Technology, vol. 63, no. 3, pp. 320–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Arseneault, S. Bédard, M. Boulet-Audet, and M. Pézolet, “Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers,” Langmuir, vol. 26, no. 5, pp. 3468–3478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. J. Schibli, P. M. Hwang, and H. J. Vogel, “The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles,” FEBS Letters, vol. 446, no. 2-3, pp. 213–217, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Nakai, J. C. K. Chan, E. C. Y. Li-Chan, J. Dou, and M. Ogawa, “Homology similarity analysis of sequences of lactoferricin and its derivatives,” Journal of Agricultural and Food Chemistry, vol. 51, no. 5, pp. 1215–1223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Gifford, H. N. Hunter, and H. J. Vogel, “Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2588–2598, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T.-J. Park, J.-S. Kim, S.-S. Choi, and Y. Kim, “Cloning, expression, isotope labeling, purification, and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli,” Protein Expression and Purification, vol. 65, no. 1, pp. 23–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T.-J. Park, J.-S. Kim, H.-C. Ahn, and Y. Kim, “Solution and solid-state NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II,” Biophysical Journal, vol. 101, no. 5, pp. 1193–1201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Brockman, “Lipid monolayers: why use half a membrane to characterize protein-membrane interactions?” Current Opinion in Structural Biology, vol. 9, no. 4, pp. 438–443, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Brezezinski and H. Möhwald, “Langmuir monolayers to study interactions at model membrane surfaces,” Advances in Colloid and Interface Science, vol. 100–102, pp. 563–584, 2003.
  44. R. Volinsky, S. Kolusheva, A. Berman, and R. Jelinek, “Investigations of antimicrobial peptides in planar film systems,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1393–1407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Volinsky, S. Kolusheva, A. Berman, and R. Jelinek, “Microscopic visualization of alamethicin incorporation into model membrane monolayers,” Langmuir, vol. 20, no. 25, pp. 11084–11091, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Marsh, “Lateral pressure in membranes,” Biochimica et Biophysica Acta, vol. 1286, no. 3, pp. 183–223, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Calvez, S. Bussières, E. D. Éric Demers, and C. Salesse, “Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers,” Biochimie, vol. 91, no. 6, pp. 718–733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Maget-Dana, “The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 109–140, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Maget-Dana, C. Hetru, and M. Ptak, “Surface activity of the insect defensin A and its interactions with lipids in mixed monolayers,” Thin Solid Films, vol. 284-285, pp. 841–844, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. J.-P. Mattila, K. Sabatini, and P. K. J. Kinnunen, “Oxidized phospholipids as potential molecular targets for antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1778, no. 10, pp. 2041–2050, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Zhao, R. Sood, A. Jutila et al., “Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1461–1474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Reig, P. Sospedra, A. Juvé, and L. Rodriguez, “Interaction of a laminin derived peptide with phosphatidyl choline/phosphatidyl glycerol,” Talanta, vol. 60, no. 2-3, pp. 591–600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Rubio, M. Pujol, M. Munoz, M. A. Alsina, I. Haro, and F. Reig, “Physicochemical study of laminin-related peptides,” Supramolecular Science, vol. 4, no. 3-4, pp. 449–453, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Kouzayha and F. Besson, “GPI-alkaline phosphatase insertion into phosphatidylcholine monolayers: phase behavior and morphology changes,” Biochemical and Biophysical Research Communications, vol. 333, no. 4, pp. 1315–1321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. M. F. Martini and E. A. Disalvo, “Superficially active water in lipid membranes and its influence on the interaction of an aqueous soluble protease,” Biochimica et Biophysica Acta, vol. 1768, no. 10, pp. 2541–2548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Mukhopadhyay and W. Cho, “Interactions of annexin V with phospholipid monolayers,” Biochimica et Biophysica Acta, vol. 1279, no. 1, pp. 58–62, 1996. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Trommeshauser, S. Krol, L. D. Bergelson, and H.-J. Galla, “The effect of lipid composition and physical state of phospholipid monolayer on the binding and incorporation of a basic amphipathic peptide from the C-terminal region of the HIV envelope protein gp41,” Chemistry and Physics of Lipids, vol. 107, no. 1, pp. 83–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Weroński, M. A. Busquets, V. Girona, and J. Prat, “Influence of lipidation of GBV-C/HGV NS3 (513–522) and (505–514) peptide sequences on its interaction with mono and bilayers,” Colloids and Surfaces B, vol. 57, no. 1, pp. 8–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Reig, A. Juvé, P. Sospedra, and L. Rodríguez, “Hydrophobic peptide interactions with phospholipids,” Colloids and Surfaces A, vol. 249, no. 1–3, pp. 15–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. Alsina, A. Ortiz, D. Polo, F. Comelles, and F. Reig, “Synthesis and study of molecular interactions between phosphatidyl choline and two laminin derived peptides hydrophobically modified,” Journal of Colloid and Interface Science, vol. 294, no. 2, pp. 385–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Caël, A. Van der Heyden, D. Champmartin, W. Barzyk, P. Rubini, and E. Rogalska, “Interfacial approach to aluminum toxicity: interactions of Al(III) and Pr(III) with model phospholipid bilayer and monolayer membranes,” Langmuir, vol. 19, no. 21, pp. 8697–8708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Miňones Jr., J. M. Rodríguez Patino, O. Conde, C. Carrera, and R. Seoane, “The effect of polar groups on structural characteristics of phospholipid monolayers spread at the air-water interface,” Colloids and Surfaces A, vol. 203, no. 1–3, pp. 273–286, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Vollhardt and V. B. Fainerman, “Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers,” Advances in Colloid and Interface Science, vol. 86, no. 1, pp. 103–151, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. V. B. Fainerman and D. Vollhardt, “Penetration of Langmuir monolayers by soluble amphiphilic molecules,” Langmuir, vol. 15, no. 5, pp. 1784–1790, 1999. View at Scopus
  65. J. Miñones Jr., P. Dynarowicz-Ł̧tka, J. Miñones, J. M. Rodriguez Patino, and E. Iribarnegaray, “Orientational changes in dipalmitoyl phosphatidyl glycerol Langmuir monolayers,” Journal of Colloid and Interface Science, vol. 265, no. 2, pp. 380–385, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Saint Martin, O. Konovalov, and J. Daillant, “Studies of phospholipid monolayer at liquid/liquid interface in presence of an antimicrobial peptide,” Thin Solid Films, vol. 515, no. 14, pp. 5687–5690, 2007.
  67. D. Vollhardt, V. B. Fainerman, and S. Siegel, “Thermodynamic and textural characterization of DPPG phospholipid monolayers,” Journal of Physical Chemistry B, vol. 104, no. 17, pp. 4115–4121, 2000. View at Scopus
  68. P. Garidel and A. Blume, “1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) monolayers: influence of temperature, pH, ionic strength and binding of alkaline earth cations,” Chemistry and Physics of Lipids, vol. 138, no. 1-2, pp. 50–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Grigoriev, R. Miller, R. Wüstneck, N. Wüstneck, U. Pison, and H. Möhwald, “A novel method to evaluate the phase transition thermodynamics of Langmuir monolayers. Application to DPPG monolayers affected by subphase composition,” Journal of Physical Chemistry B, vol. 107, no. 51, pp. 14283–14288, 2003. View at Scopus
  70. D. Grigoriev, R. Krustev, R. Miller, and U. Pison, “Effect of monovalent ions on the monolayers phase behavior of the charged lipid DPPG,” Journal of Physical Chemistry B, vol. 103, no. 6, pp. 1013–1018, 1999. View at Scopus
  71. A. Dicko, H. Bourque, and M. Pézolet, “Study by infrared spectroscopy of the conformation of dipalmitoylphosphatidylglycerol monolayers at the air-water interface and transferred on solid substrates,” Chemistry and Physics of Lipids, vol. 96, no. 1-2, pp. 125–139, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Nakahara, S. Nakamura, S. Lee, G. Sugihara, and O. Shibata, “Influence of a new amphiphilic peptide with phospholipid monolayers at the air-water interface,” Colloids and Surfaces A, vol. 270-271, no. 1–3, pp. 52–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Bellomio, R. G. Oliveira, B. Maggio, and R. D. Morero, “Penetration and interactions of the antimicrobial peptide, microcin J25, into uncharged phospholipid monolayers,” Journal of Colloid and Interface Science, vol. 285, no. 1, pp. 118–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. E. E. Ambroggio, F. Separovic, J. Bowie, and G. D. Fidelio, “Surface behaviour and peptide-lipid interactions of the antibiotic peptides, Maculatin and Citropin,” Biochimica et Biophysica Acta, vol. 1664, no. 1, pp. 31–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Barzyk, S. Campagna, K. Wiecław, B. Korchowiec, and E. Rogalska, “The affinity of two antimicrobial peptides derived from bovine milk proteins for model lipid membranes,” Colloids and Surfaces A, vol. 343, no. 1–3, pp. 104–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. F. Neville, O. Konovalov, and D. Gidalevitz, “A comparative study on the interactions of SMAP-29 with lipid monolayers,” Biochimica et Biophysica Acta, vol. 1798, pp. 851–860, 2010.
  77. F. Neville, M. Cahuzac, O. Konovalov, et al., “Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action,” Biophysical Journal, vol. 90, pp. 1275–1287, 2006.
  78. D. M. Taylor, “Developments in the theoretical modelling and experimental measurement of the surface potential of condensed monolayers,” Advances in Colloid and Interface Science, vol. 87, no. 2-3, pp. 183–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Dynarowicz, “Recent developments in the modeling of the monolayers structure at the water/air interface,” Advances in Colloid and Interface Science, vol. 45, pp. 215–241, 1993. View at Scopus
  80. V. Vogel and D. Möbius, “Local surface potentials and electric dipole moments of lipid monolayers: contributions of the water/lipid and the lipid/air interfaces,” Journal of Colloid And Interface Science, vol. 126, no. 2, pp. 408–420, 1988. View at Scopus
  81. J. T. Davies and E. K. Rideal, Interfacial Phenomena, Academic Press, New York, NY, USA, 1963.
  82. D. Vollhardt and V. B. Fainerman, “Progress in characterization of Langmuir monolayers by consideration of compressibility,” Advances in Colloid and Interface Science, vol. 127, no. 2, pp. 83–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. W. Barzyk and J. Vuorinen, “Application of the vibrating plate (VP) technique to measuring electric surface potential, ΔV, of solutions; the flow cell for simultaneous measurement of the ΔV and the surface pressure, Π,” Colloids and Surfaces A, vol. 385, no. 1–3, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. G. T. Barnes, “The equilibrium penetration of monolayers. Is equilibrium really established?” Colloids and Surfaces A, vol. 190, no. 1-2, pp. 145–151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. G. T. Barnes, G. A. Lawrie, and K. Walker, “Equilibrium penetration of monolayers. 9. A comparison of treatments for analyzing surface-pressure-area data,” Langmuir, vol. 14, no. 8, pp. 2148–2153, 1998. View at Scopus
  86. J. B. Li, J. Krägel, A. V. Makiewski, V. B. Finerman, R. Miller, and H. Möhwald, “A study of mixed phospholipid/β-casein monolayers at the water/air interface,” Colloids and Surfaces A, vol. 142, pp. 355–360, 1998.
  87. S. R. Dennison, L. H. G. Morton, F. Harris, and D. A. Phoenix, “The impact of membrane lipid composition on antimicrobial function of an α-helical peptide,” Chemistry and Physics of Lipids, vol. 151, no. 2, pp. 92–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. S. R. Dennison, F. Harris, and D. A. Phoenix, “Are oblique orientated α-helices used by antimicrobial peptides for membrane invasion?” Protein and Peptide Letters, vol. 12, no. 1, pp. 27–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Zhao, D. Vollhardt, G. Brezesinski et al., “Effect of protein penetration into phospholipid monolayers: morphology and structure,” Colloids and Surfaces A, vol. 171, no. 1–3, pp. 175–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. V. B. Fainerman, J. Zhao, D. Vollhardt, A. V. Makievski, and J. B. Li, “Dynamics of β-Lactoglobulin penetration into Langmuir monolayers of 2D condensating phospholipid,” Journal of Physical Chemistry B, vol. 103, no. 42, pp. 8998–9007, 1999. View at Scopus
  91. V. Krishnakumari and R. Nagaraj, “Interaction of antibacterial peptides spanning the carboxy-terminal region of human β-defensins 1–3 with phospholipids at the air-water interface and inner membrane of E. coli,” Peptides, vol. 29, no. 1, pp. 7–14, 2008. View at Publisher · View at Google Scholar · View at Scopus