About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2013 (2013), Article ID 939865, 12 pages
http://dx.doi.org/10.1155/2013/939865
Research Article

Nearest-Neighbor Interactions and Their Influence on the Structural Aspects of Dipeptides

Department of Chemistry, North Eastern Hill University, Shillong 793022, India

Received 9 July 2013; Accepted 15 August 2013

Academic Editor: Emil Pai

Copyright © 2013 Gunajyoti Das and Shilpi Mandal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Rother and J. A. Krzycki, “Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea,” Archaea, vol. 2010, Article ID 453642, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Chambers, J. Frampton, P. Goldfarb, N. Affara, W. McBain, and P. R. Harrison, “The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA,” The EMBO Journal, vol. 5, no. 6, pp. 1221–1227, 1986. View at Scopus
  3. F. Zinoni, A. Birkmann, T. C. Stadtman, and A. Bock, “Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 13, pp. 4650–4654, 1986. View at Scopus
  4. A. Bock, K. Forchhammer, J. Heider et al., “Selenocysteine: the 21st amino acid,” Molecular Microbiology, vol. 5, no. 3, pp. 515–520, 1991. View at Scopus
  5. N. P. Lukashenko, “Expanding genetic code: amino acids 21 and 22, selenocysteine and pyrrolysine,” Russian Journal of Genetics, vol. 46, no. 8, pp. 899–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T. C. Stadtman, “Selenocysteine,” Annual Review of Biochemistry, vol. 65, pp. 83–100, 1996. View at Publisher · View at Google Scholar
  7. D. L. Hatfield and V. N. Gladyshev, “How selenium has altered our understanding of the genetic code,” Molecular and Cellular Biology, vol. 22, no. 11, pp. 3565–3576, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. R. H. Garrett and C. M. Grisham, Biochemistry, Chapter 6, Saunders College Publishing, New York, NY, USA, 1999.
  9. M. R. Wormald, A. J. Petrescu, Y.-L. Pao, A. Glithero, T. Elliott, and R. A. Dwek, “Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling,” Chemical Reviews, vol. 102, no. 2, pp. 371–386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Foloppe, B. Hartmann, L. Nilsson, and A. D. MacKerell Jr., “Intrinsic conformational energetics associated with the glycosyl torsion in DNA: a quantum mechanical study,” Biophysical Journal, vol. 82, no. 3, pp. 1554–1569, 2002. View at Scopus
  11. J. Sponer, M. Zgarbova, P. Jurecka, K. E. Riley, J. E. Sponer, and P. Hobza, “Reference quantum chemical calculations on RNA base pairs directly involving the 2′-OH group of ribose,” Journal of Chemical Theory and Computation, vol. 5, pp. 1166–1179, 1999. View at Publisher · View at Google Scholar
  12. S. Ghosh, S. Mondal, A. Misra, and S. Dalai, “Investigation on the structure of dipeptides: a DFT study,” Journal of Molecular Structure, vol. 805, no. 1–3, pp. 133–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. D. Keefe and J. K. Pearson, “Ab initio investigations of dipeptide structures,” Journal of Molecular Structure, vol. 679, no. 1-2, pp. 65–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Saada and J. K. Pearson, “A theoretical study of the structure and electron density of the peptide bond,” Computational and Theoretical Chemistry, vol. 969, no. 1–3, pp. 76–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Vargas, J. Garza, B. P. Hay, and D. A. Dixon, “Conformational study of the alanine dipeptide at the MP2 and DFT levels,” Journal of Physical Chemistry A, vol. 106, no. 13, pp. 3213–3218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Tobiast and C. L. Brooks III, “Conformational equilibrium in the alanine dipeptide in the gas phase and aqueous solution: a comparison of theoretical results,” Journal of Physical Chemistry A, vol. 96, pp. 3864–3874, 1992. View at Publisher · View at Google Scholar
  17. Z.-X. Wang and Y. Duan, “Solvation effects on alanine dipeptide: a MP2/cc-pVTZ//MP2/6-31G** study of (Φ, Ψ) energy maps and conformers in the gas phase, ether, and water,” Journal of Computational Chemistry, vol. 25, no. 14, pp. 1699–1716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. F. F. García-Prieto, I. F. Galvan, M. A. Aguilar, and M. E. Martín, “Study on the conformational equilibrium of the alanine dipeptide in water solution by using the averaged solvent electrostatic potential from molecular dynamics methodology,” Journal of Chemical Physics, vol. 135, pp. 194502–194509, 2011.
  19. I. R. Gould, W. D. Cornell, and I. H. Hillier, “A quantum mechanical investigation of the conformational energetics of the alanine and glycine dipeptides in the gas phase and in aqueous solution,” Journal of the American Chemical Society, vol. 116, no. 20, pp. 9250–9256, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Head-Gordon, M. Head-Gordon, M. J. Frisch, C. L. Brooks III, and J. A. Pople, “Theoretical study of blocked glycine and alanine peptide analogues,” Journal of the American Chemical Society, vol. 113, no. 16, pp. 5989–5997, 1991. View at Scopus
  21. C. Adamo, V. Dillet, and V. Barone, “Solvent effects on the conformational behavior of model peptides. A comparison between different continuum models,” Chemical Physics Letters, vol. 263, no. 1-2, pp. 113–118, 1996. View at Scopus
  22. G. Das, “Investigations of dipeptide structures containing pyrrolysine as N-terminal residues: a DFT study in gas and aqueous phase,” Journal of Molecular Modeling, vol. 19, no. 4, pp. 1901–1911, 2013. View at Publisher · View at Google Scholar
  23. S. Mandal and G. Das, “Structure of dipeptides having N-terminal selenocysteine residues: a DFT study in gas and aqueous phase,” Journal of Molecular Modeling, vol. 19, pp. 2613–2613, 2013. View at Publisher · View at Google Scholar
  24. G. N. Ramachandran, “Need for nonplanar peptide units in polypeptide chains,” Biopolymers, vol. 6, pp. 1494–1496, 1963. View at Publisher · View at Google Scholar
  25. G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, “Stereochemistry of polypeptide chain configurations,” Journal of Molecular Biology, vol. 7, pp. 95–99, 1963. View at Scopus
  26. G. A. Chasse, A. M. Rodriguez, M. L. Mak et al., “Peptide and protein folding,” Journal of Molecular Structure, vol. 537, no. 1, pp. 319–361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” Journal of Chemical Physics, vol. 98, pp. 5648–5662, 1993. View at Publisher · View at Google Scholar
  28. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Frisch, et al., Gaussian 03, Revision C. 01, Wallingford, Conn, USA, 2004.
  30. Z. A. Tehrani, E. Tavasoli, and A. Fattahi, “Conformational behavior and potential energy profile of gaseous histidine,” Journal of Molecular Structure, vol. 960, no. 1–3, pp. 73–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Miertus, E. Scrocco, and J. Tomasi, “Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects,” Chemical Physics, vol. 55, no. 1, pp. 117–129, 1981. View at Publisher · View at Google Scholar
  32. I. R. Gould and I. H. Hillier, “Solvation of alanine dipeptide: a quantum mechanical treatment,” Journal of the Chemical Society, Chemical Communications, pp. 951–952, 1993. View at Publisher · View at Google Scholar
  33. M. P. Andersson and P. Uvdal, “New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis Set 6-311+G(d,p),” Journal of Physical Chemistry A, vol. 109, no. 12, pp. 2937–2941, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Pittsburgh, Pa, USA, 2nd edition, 1996.
  35. F. Freeman and K. T. Le, “A computational study of conformations and conformers of 1,3-dithiane (1,3-dithiacyclohexane),” Journal of Physical Chemistry A, vol. 107, no. 16, pp. 2908–2918, 2003. View at Publisher · View at Google Scholar
  36. S. G. Stepanian, I. D. Reva, E. D. Radchenko et al., “Matrix-isolation infrared and theoretical studies of the glycine conformers,” Journal of Physical Chemistry A, vol. 102, no. 6, pp. 1041–1054, 1998. View at Scopus
  37. S. G. Stepanian, I. D. Reva, E. D. Radchenko, and L. Adamowicz, “Conformational behavior of α-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study,” Journal of Physical Chemistry A, vol. 102, no. 24, pp. 4623–4629, 1998. View at Scopus
  38. Z. Huang and Z. Lin, “Detailed Ab initio studies of the conformers and conformational distributions of gaseous tryptophan,” Journal of Physical Chemistry A, vol. 109, no. 11, pp. 2656–2659, 2005. View at Publisher · View at Google Scholar
  39. M. T. Baei and S. Zahra Sayyed-Alangi, “Effects of zinc binding on the structure and stability of glycylglycine dipeptide: a computational study,” E-Journal of Chemistry, vol. 9, no. 3, pp. 1244–1250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Fukui, T. Yonezawa, and H. Shingu, “A molecular orbital theory of reactivity in aromatic hydrocarbons,” The Journal of Chemical Physics, vol. 20, no. 4, pp. 722–725, 1952. View at Scopus
  41. L. Padmaja, C. Ravikumar, D. Sajan et al., “Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2,” Journal of Raman Spectroscopy, vol. 40, no. 4, pp. 419–428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Ravikumar, J. I. Hubert, and V. S. Jayakumar, “Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: a vibrational approach,” Chemical Physics Letters, vol. 460, pp. 552–558, 2008. View at Publisher · View at Google Scholar
  43. Z. Slanina, M.-A. Hsu, and T. J. Chow, “Computations on a series of substituted quinolines,” Journal of the Chinese Chemical Society, vol. 50, no. 3, pp. 593–596, 2003. View at Scopus