About this Journal Submit a Manuscript Table of Contents
Biochemistry Research International
Volume 2014 (2014), Article ID 568141, 5 pages
http://dx.doi.org/10.1155/2014/568141
Research Article

Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation

Department of Biotechnology, Haldia Institute of Technology, ICARE Complex, Purba Medinipur 721657, India

Received 26 July 2013; Revised 27 November 2013; Accepted 11 December 2013; Published 12 January 2014

Academic Editor: Hans-Jürgen Apell

Copyright © 2014 Dibyangana Raul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Rameshkumar and T. Sivasudha, “Optimization of nutritional constitute for enhanced α-amylase production by solid state fermentation technology,” International Journal of Microbiological Research, vol. 2, no. 2, p. 148, 2011.
  2. P. Nigam and D. Singh, “Enzyme and microbial systems involved in starch processing,” Enzyme and Microbial Technology, vol. 17, no. 9, pp. 770–778, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Burhan, U. Nisa, C. Gökhan, C. Ömer, A. Ashabil, and G. Osman, “Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6,” Process Biochemistry, vol. 38, no. 10, pp. 1397–1403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Levine and R. J. P. Williams, “Calcium binding to proteins and other large biological anion centers,” in Calcium and Cell Function, W. Y. Cheung, Ed., pp. 1–38, Academic Press, New York, NY, USA, 1982.
  5. C. B. Klee and T. C. Vanaman, “Calmodulin,” Advances in Protein Chemistry, vol. 35, pp. 213–321, 1982. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Kadziola, J.-I. Abe, B. Svensson, and R. Haser, “Crystal and molecular structure of barley α-amylase,” Journal of Molecular Biology, vol. 239, no. 1, pp. 104–121, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. MacGregor, “α-Amylase structure and activity,” Journal of Protein Chemistry, vol. 7, no. 4, pp. 399–415, 1988. View at Scopus
  8. W. Crueger and A. Crueger, Eds., Industrial Microbiology, Sinauer Associates, Sunderland, Mass, USA, 1989.
  9. G. Rajagopalan and C. Krishnan, “α-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate,” Bioresource Technology, vol. 99, no. 8, pp. 3044–3050, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. S. Reddy, A. Nimmagadda, and K. R. S. S. Rao, “An overview of the microbial α-amylase family,” African Journal of Biotechnology, vol. 2, no. 12, pp. 645–648, 2003. View at Scopus
  11. R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan, “Microbial α-amylases: a biotechnological perspective,” Process Biochemistry, vol. 38, no. 11, pp. 1599–1616, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Kandra, “α-Amylases of medical and industrial importance,” Journal of Molecular Structure: THEOCHEM, vol. 666-667, pp. 487–498, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Pandey, P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan, “Advances in microbial amylases,” Biotechnology and Applied Biochemistry, vol. 31, no. 2, pp. 135–152, 2000. View at Scopus
  14. R. K. Saxena, K. Dutt, L. Agarwal, and P. Nayyar, “A highly thermostable and alkaline amylase from a Bacillus sp. PN5,” Bioresource Technology, vol. 98, no. 2, pp. 260–265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Asgher, M. J. Asad, S. U. Rahman, and R. L. Legge, “A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing,” Journal of Food Engineering, vol. 79, no. 3, pp. 950–955, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Hamilton, C. T. Kelly, and W. M. Fogarty, “Production and properties of the raw starch-digesting α-amylase of Bacillus sp. IMD 435,” Process Biochemistry, vol. 35, no. 1-2, pp. 27–31, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Goyal, J. K. Gupta, and S. K. Soni, “A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch,” Enzyme and Microbial Technology, vol. 37, no. 7, pp. 723–734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Schwab, J. Bader, C. Brokamp, M. K. Popović, R. Bajpai, and M. Berovič, “Dual feeding strategy for the production of α-amylase by Bacillus caldolyticus using complex media,” New Biotechnology, vol. 26, no. 1-2, pp. 68–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. I.-U. Haq, H. Ashraf, J. Iqbal, and M. A. Qadeer, “Production of alpha amylase by Bacillus licheniformis using an economical medium,” Bioresource Technology, vol. 87, no. 1, pp. 57–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. R. Couto and M. Á. Sanromán, “Application of solid-state fermentation to food industry-a review,” Journal of Food Engineering, vol. 76, no. 3, pp. 291–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Pandey, “Solid-state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 81–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. S. Tanyildizi, D. Özer, and M. Elibol, “Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation,” Biochemical Engineering Journal, vol. 37, no. 3, pp. 294–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. V. H. Mulimani and G. N. P. Ramalingam, “α-Amylase production by solid state fermentation: a new practical approach to biotechnology courses,” Biochemical Education, vol. 28, no. 3, pp. 161–163, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Shukla and R. Kar, “Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates,” World Journal of Microbiology and Biotechnology, vol. 22, no. 5, pp. 417–422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Vijayabaskar, D. Jayalakshmi, and T. Shankar, “Amylase production by moderately halophilic Bacillus cereus in solid state fermentation,” African Journal of MiCrobiology Research, vol. 6, pp. 4918–4926, 2012.
  26. Z. Baysal, F. Uyar, and Ç. Aytekin, “Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water,” Process Biochemistry, vol. 38, no. 12, pp. 1665–1668, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. K. Mukherjee, M. Borah, and S. K. Rai, “To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent formulations,” Biochemical Engineering Journal, vol. 43, no. 2, pp. 149–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. K. Sodhi, K. Sharma, J. K. Gupta, and S. K. Soni, “Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production,” Process Biochemistry, vol. 40, no. 2, pp. 525–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. K. Soni, A. Kaur, and J. K. Gupta, “A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch,” Process Biochemistry, vol. 39, no. 2, pp. 185–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. O. H. Lowry, N. J. Rosenbrough, A. I. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Scopus
  31. G. L. Miller, “Use of dinitrosalisylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–429, 1959.
  32. N. Božić, J. Ruiz, J. López-Santín, and Z. Vujčić, “Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a,” Biochemical Engineering Journal, vol. 53, no. 2, pp. 203–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. Y.-H. Liu, F.-P. Lu, Y. Li, J.-L. Wang, and C. Gao, “Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations,” Applied Microbiology and Biotechnology, vol. 80, no. 5, pp. 795–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. V. N. Ivanova, E. P. Dobreva, and E. I. Emanuilova, “Purification and characterization of a thermostable alpha-amylase from Bacillus licheniformis,” Journal of Biotechnology, vol. 28, no. 2-3, pp. 277–289, 1993. View at Scopus