About this Journal Submit a Manuscript Table of Contents
Current Gerontology and Geriatrics Research
Volume 2012 (2012), Article ID 986823, 13 pages
http://dx.doi.org/10.1155/2012/986823
Review Article

Alzheimer's Disease Promotion by Obesity: Induced Mechanisms—Molecular Links and Perspectives

1Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
2Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
3Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
4Department of Surgery “P. Valdoni,” Sapienza University of Rome, Via A. scarpa 14, 00161 Rome, Italy

Received 26 February 2012; Accepted 10 April 2012

Academic Editor: Fabio Coppedè

Copyright © 2012 Rita Businaro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi, “Forecasting the global burden of Alzheimer's disease,” Alzheimer's and Dementia, vol. 3, no. 3, pp. 186–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Alzheimer’s disease facts and figures, 2010, http://www.alz.org/documents_custom/report_alzfactsfi gures2010.pdf.
  3. M. K. Hasan and R. P. Mooney, “The predisposing factors, biological markers, neuroimaging techniques and medical complications associated with Alzheimer's disease,” The West Virginia Medical Journal, vol. 107, no. 3, pp. 26–29, 2011. View at Scopus
  4. C. B. Hall, J. Verghese, M. Sliwinski et al., “Dementia incidence may increase more slowly after age 90: results from the bronx aging study,” Neurology, vol. 65, no. 6, pp. 882–886, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. P. Chrousos, “Stress and disorders of the stress system,” Nature Reviews Endocrinology, vol. 5, pp. 374–381, 2009.
  6. S. Ricci, A. Fuso, F. Ippoliti, and R. Businaro, “Stress-induced cytokines and neuronal dysfunction in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 28, no. 1, pp. 11–24, 2012. View at Publisher · View at Google Scholar
  7. J. C. Hansen, A. P. Gilman, and J. Ø. Odland, “Is thermogenesis a significant causal factor in preventing the “globesity” epidemic?” Medical Hypotheses, vol. 75, no. 2, pp. 250–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Hedley, C. L. Ogden, C. L. Johnson, M. D. Carroll, L. R. Curtin, and K. M. Flegal, “Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002,” Journal of the American Medical Association, vol. 291, no. 23, pp. 2847–2850, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Micciolo, V. di Francesco, F. Fantin et al., “Prevalence of overweight and obesity in Italy (2001–2008): is there a rising obesity epidemic?” Annals of Epidemiology, vol. 20, no. 4, pp. 258–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. M. Reaven, “Insulin resistance: the link between obesity and cardiovascular disease,” Medical Clinics of North America, vol. 95, no. 5, pp. 875–892, 2011.
  11. K. R. Fontaine, D. T. Redden, C. Wang, A. O. Westfall, and D. B. Allison, “Years of life lost due to obesity,” Journal of the American Medical Association, vol. 289, no. 2, pp. 187–193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. D. M. Huffman and N. Barzilai, “Role of visceral adipose tissue in aging,” Biochimica Et Biophysica Acta, vol. 1790, no. 10, pp. 1117–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. Valdes, T. Andrew, J. P. Gardner et al., “Obesity, cigarette smoking, and telomere length in women,” The Lancet, vol. 366, no. 9486, pp. 662–664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Straub, F. Buttgereit, and M. Cutolo, “Alterations of the hypothalamic-pituitary-adrenal axis in systemic immune diseases—a role for misguided energy regulation,” Clinical and Experimental Rheumatology, vol. 29, no. 5 Suppl. 68, pp. S23–S31, 2011.
  15. G. S. Hotamisligil and E. Erbay, “Nutrient sensing and inflammation in metabolic diseases,” Nature Reviews Immunology, vol. 8, no. 12, pp. 923–934, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. P. Karalis, P. Giannogonas, E. Kodela, Y. Koutmani, M. Zoumakis, and T. Teli, “Mechanisms of obesity and related pathology: linking immune responses to metabolic stress,” The FEBS Journal, vol. 276, no. 20, pp. 5747–5754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Kim, R. A. Bachmann, and J. Chen, “Chapter 21 Interleukin-6 and Insulin Resistance,” Vitamins and Hormones, vol. 80, pp. 613–633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zuo, Z. Shi, X. Hu, M. Wu, Z. Guo, and A. Hussain, “Diabetes, impaired fasting glucose and their relations to plasma pro-inflammatory cytokines: a population-based study in China.,” Diabetic medicine, vol. 27, no. 12, pp. 1461–1463, 2010. View at Scopus
  19. P. Bjorntorp, “‘Portal’ adipose tissue as a generator of risk factors for cardiovascular disease and diabetes,” Arteriosclerosis, vol. 10, no. 4, pp. 493–496, 1990. View at Scopus
  20. P. Libby, Y. Okamoto, V. Z. Rocha, and E. Folco, “Inflammation in atherosclerosis: transition from theory to practice,” Circulation Journal, vol. 74, no. 2, pp. 213–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. M. Huffman and N. Barzilai, “Contribution of adipose tissue to health span and longevity,” Interdisciplinary Topics in Gerontology, vol. 37, pp. 1–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. K. Naderali, S. H. Ratcliffe, and M. C. Dale, “Obesity and alzheimer's disease: a link between body weight and cognitive function in old age,” American Journal of Alzheimer's Disease and other Dementias, vol. 24, no. 6, pp. 445–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Z. Rocha, E. J. Folco, G. Sukhova et al., “Interferon-γ, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity,” Circulation Research, vol. 103, no. 5, pp. 467–476, 2008. View at Scopus
  24. L. Pacifico, L. di Renzo, C. Anania et al., “Increased T-helper interferon-γ-secreting cells in obese children,” European Journal of Endocrinology, vol. 154, no. 5, pp. 691–697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Sato, S. Takeda, K. Uchio-Yamada et al., “Role of insulin signaling in the interaction between Alzheimer disease and diabetes mellitus: a missing link to Therapeutic potential,” Current Aging Science, vol. 4, no. 2, pp. 118–127, 2011. View at Scopus
  26. M. Takeuchi and S. I. Yamagishi, “Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer's disease,” Current Pharmaceutical Design, vol. 14, no. 10, pp. 973–978, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Valente, A. Gella, X. Fernàndez-Busquets, M. Unzeta, and N. Durany, “Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus,” Neurobiology of Disease, vol. 37, no. 1, pp. 67–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Businaro, S. Leone, C. Fabrizi et al., “S100B protects LAN-5 neuroblastoma cells against Aβ amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Aβ amyloid neurotoxicity at high doses,” Journal of Neuroscience Research, vol. 83, no. 5, pp. 897–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Yamagishi, K. Nakamura, H. Inoue, S. Kikuchi, and M. Takeuchi, “Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer's disease,” Medical Hypotheses, vol. 64, no. 6, pp. 1205–1207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. de la Monte, “Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer's disease,” Drugs, vol. 72, pp. 49–66, 2012.
  31. R. H. Straub, “Evolutionary medicine and chronic inflammatory state-known and new concepts in pathophysiology,” Journal of Molecular Medicine, vol. 90, no. 5, pp. 523–534, 2012.
  32. F. Samad, L. Badeanlou, C. Shah, and G. Yang, “Adipose tissue and ceramide biosynthesis in the pathogenesis of obesity,” Advances in Experimental Medicine and Biology, vol. 721, pp. 67–86, 2011. View at Publisher · View at Google Scholar
  33. R. H. Straub, M. Cutolo, F. Buttgereit, and G. Pongratz, “Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases,” Journal of Internal Medicine, vol. 267, no. 6, pp. 543–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. S. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M. F. White, and B. M. Spiegelman, “IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance,” Science, vol. 271, no. 5249, pp. 665–668, 1996. View at Scopus
  35. E. Cauza, K. Cauza, U. Hanusch-Enserer, M. Etemad, A. Dunky, and K. Kostner, “Intravenous anti TNF-α antibody therapy leads to elevated triglyceride and reduced HDL-cholesterol levels in patients with rheumatoid and psoriatic arthritis,” Wiener Klinische Wochenschrift, vol. 114, no. 23-24, pp. 1004–1007, 2002. View at Scopus
  36. S. Chung, K. LaPoint, K. Martinez, A. Kennedy, M. Boysen Sandberg, and M. K. McIntosh, “Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes,” Endocrinology, vol. 147, no. 11, pp. 5340–5351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Charrière, B. Cousin, E. Arnaud et al., “Preadipocyte conversion to macrophage: evidence of plasticity,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9850–9855, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Engelhart, M. I. Geerlings, J. Meijer et al., “Inflammatory proteins in plasma and the risk of dementia: the rotterdam study,” Archives of Neurology, vol. 61, no. 5, pp. 668–672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. S. Tan, A. S. Beiser, R. S. Vasan et al., “Inflammatory markers and the risk of Alzheimer disease: the framingham study,” Neurology, vol. 68, no. 22, pp. 1902–1908, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. F. Elias, P. K. Elias, L. M. Sullivan, P. A. Wolf, and R. B. D'Agostino, “Obesity, diabetes and cognitive deficit: the Framingham Heart Study,” Neurobiology of Aging, vol. 26, supplement 1, pp. S11–S16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Osher and N. Stern, “Obesity in elderly subjects: in sheep's clothing perhaps, but still a wolf!,” Diabetes Care, vol. 32, supplement 2, pp. S398–402, 2009. View at Scopus
  42. S. R. Waldstein and L. I. Katzel, “Interactive relations of central versus total obesity and blood pressure to cognitive function,” International Journal of Obesity, vol. 30, no. 1, pp. 201–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Fantuzzi, “Adipose tissue, adipokines, and inflammation,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 911–920, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Szelényi and E. S. Vizi, “The catecholamine-cytokine balance: interaction between the brain and the immune system,” Annals of the New York Academy of Sciences, vol. 1113, pp. 311–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. L. R. Watkins, S. F. Maier, and L. E. Goehler, “Cytokine-to-brain communication: a review & analysis of alternative mechanisms,” Life Sciences, vol. 57, no. 11, pp. 1011–1026, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Wauman and J. Tavernier, “Leptin receptor signaling: pathways to leptin resistance,” Frontiers in Bioscience, vol. 17, pp. 2771–2793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Procaccini, V. de Rosa, M. Galgani et al., “An oscillatory switch in mTOR kinase activity sets regulatory T Cell responsiveness,” Immunity, vol. 33, no. 6, pp. 929–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Matarese and A. la Cava, “The intricate interface between immune system and metabolism,” Trends in Immunology, vol. 25, no. 4, pp. 193–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. G. M. Lord, G. Matarese, J. K. Howard, R. J. Baker, S. R. Bloom, and R. I. Lechler, “Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression,” Nature, vol. 394, no. 6696, pp. 897–901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. V. de Rosa, C. Procaccini, G. Calì et al., “A key role of leptin in the control of regulatory T cell proliferation,” Immunity, vol. 26, no. 2, pp. 241–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Feuerer, L. Herrero, D. Cipolletta et al., “Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters,” Nature Medicine, vol. 15, no. 8, pp. 930–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Winer, Y. Chan, G. Paltser et al., “Normalization of obesity-associated insulin resistance through immunotherapy,” Nature Medicine, vol. 15, no. 8, pp. 921–929, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Matarese, V. de Rosa, and A. la Cava, “Regulatory CD4 T cells: sensing the environment,” Trends in Immunology, vol. 29, no. 1, pp. 12–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Procaccini, M. Galgani, V. de Rosa, and G. Matarese, “Intracellular metabolic pathways control immune tolerance,” Trends in Immunology, vol. 33, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar
  55. J. M. Friedman and J. L. Halaas, “Leptin and the regulation of body weight in mammals,” Nature, vol. 395, no. 6704, pp. 763–770, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Lissner, C. Karlsson, A. K. Lindroos et al., “Birth weight, adulthood BMI, and subsequent weight gain in relation to leptin levels in Swedish women,” Obesity Research, vol. 7, no. 2, pp. 150–154, 1999. View at Scopus
  57. R. Singh, “Hypothalamic lipophagy and energetic balance,” Aging, vol. 3, no. 10, pp. 934–942, 2011.
  58. D. Cota, J. G. Barrera, and R. J. Seeley, “Leptin in energy balance and reward: two faces of the same coin?” Neuron, vol. 51, no. 6, pp. 678–680, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Cota, K. Proulx, K. A. Blake Smith et al., “Hypothalamic mTOR signaling regulates food intake,” Science, vol. 312, no. 5775, pp. 927–930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Galgani and G. Matarese, “Editorial: acute inflammation in obesity: IL-17A in the middle of the battle,” Journal of Leukocyte Biology, vol. 87, no. 1, pp. 17–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Fischer, M. Hanefeld, S. M. Haffner et al., “Insulin-resistant patients with type 2 diabetes mellitus have higher serum leptin levels independently of body fat mass,” Acta Diabetologica, vol. 39, no. 3, pp. 105–110, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Wauters, R. V. Considine, J. S. Yudkin, F. Peiffer, I. de Leeuw, and L. F. van Gaal, “Leptin levels in type 2 diabetes: associations with measures of insulin resistance and insulin secretion,” Hormone and Metabolic Research, vol. 35, no. 2, pp. 92–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Katagiri, T. Yamada, and Y. Oka, “Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals,” Circulation Research, vol. 101, no. 1, pp. 27–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. D. S. Knopman and R. Roberts, “Vascular risk factors: imaging and neuropathologic correlates,” Journal of Alzheimer's Disease, vol. 20, no. 3, pp. 699–709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Coupé, I. Grit, P. Hulin, G. Randuineau, and P. Parnet, “Postnatal growth after intrauterine growth restriction alters central leptin signal and energy homeostasis,” PLoS One, vol. 7, no. 1, Article ID e30616, 2012. View at Publisher · View at Google Scholar
  66. B. S. Hamilton, D. Paglia, A. Y. M. Kwan, and M. Deitel, “Increased obese mRNA expression in omental fat cells from massively obese humans,” Nature Medicine, vol. 1, no. 9, pp. 953–956, 1995. View at Scopus
  67. Z. Wang and T. Nakayama, “Inflammation, a link between obesity and cardiovascular disease,” Mediators of Inflammation, vol. 2010, Article ID 535918, 17 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Schenk, M. Saberi, and J. M. Olefsky, “Insulin sensitivity: modulation by nutrients and inflammation,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 2992–3002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Sarzi-Puttini, F. Atzeni, J. Schölmerich, M. Cutolo, and R. H. Straub, “Anti-TNF antibody treatment improves glucocorticoid induced insulin-like growth factor1 (IGF1) resistance without influencing myoglobin and IGF1 binding proteins 1 and 3,” Annals of the Rheumatic Diseases, vol. 65, no. 3, pp. 301–305, 2006. View at Publisher · View at Google Scholar
  70. G. Paz-Filho, M. L. Wong, and J. Licinio, “The procognitive effects of leptin in the brain and their clinical implications,” International Journal of Clinical Practice, vol. 64, no. 13, pp. 1808–1812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. W. Schwartz and D. Porte, “Diabetes, obesity, and the brain,” Science, vol. 307, no. 5708, pp. 375–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Paz-Filho, M. L. Wong, and J. Licinio, “Leptin levels and Alzheimer disease,” Journal of the American Medical Association, vol. 303, no. 15, pp. 1478–1479, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Harvey, L. J. Shanley, D. O'Malley, and A. J. Irving, “Leptin: a potential cognitive enhancer?” Biochemical Society Transactions, vol. 33, part 5, pp. 1029–1032, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. T. L. Davidson, S. E. Kanoski, E. K. Walls, and L. E. Jarrard, “Memory inhibition and energy regulation,” Physiology and Behavior, vol. 86, no. 5, pp. 731–746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Zhao, W. Deng, and F. H. Gage, “Mechanisms and functional implications of adult neurogenesis,” Cell, vol. 132, no. 4, pp. 645–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. C. D. Morrison, “Leptin signaling in brain: a link between nutrition and cognition?” Biochimica Et Biophysica Acta, vol. 1792, no. 5, pp. 401–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Pérez-González, D. Antequera, T. Vargas, C. Spuch, M. Bolós, and E. Carro, “Leptin induces proliferation of neuronal progenitors and neuroprotection in a mouse model of alzheimer's disease,” Journal of Alzheimer's Disease, vol. 24, supplement 2, pp. 17–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Tezapsidis, J. M. Johnston, M. A. Smith et al., “Leptin: a novel therapeutic strategy for Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 16, no. 4, pp. 731–740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Bigalke, B. Schreitmüller, K. Sopova et al., “Adipocytokines and cd34+ progenitor cells in alzheimer's disease,” PLoS One, vol. 6, Article ID e20286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Liu, F. Liu, I. Grundke-Iqbal, K. Iqbal, and C. X. Gong, “Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes,” Journal of Pathology, vol. 225, no. 1, pp. 54–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Ott, R. P. Stolk, F. van Harskamp, H. A. P. Pols, A. Hofman, and M. M. B. Breteler, “Diabetes mellitus and the risk of dementia: the rotterdam study,” Neurology, vol. 53, no. 9, pp. 1937–1942, 1999. View at Scopus
  82. Z. Kroner, “The relationship between Alzheimer's disease and diabetes: type 3 diabetes?” Alternative Medicine Review, vol. 14, no. 4, pp. 373–379, 2009. View at Scopus
  83. S. Takeda, N. Sato, K. Uchio-Yamada et al., “Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 15, pp. 7036–7041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Hölscher, “Diabetes as a risk factor for Alzheimer's disease: insulin signalling impairment in the brain as an alternative model of Alzheimer's disease,” Biochemical Society Transactions, vol. 39, no. 4, pp. 891–897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. E. J. Rivera, A. Goldin, N. Fulmer, R. Tavares, J. R. Wands, and S. M. de la Monte, “Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine,” Journal of Alzheimer's Disease, vol. 8, no. 3, pp. 247–268, 2005. View at Scopus
  86. K. Akter, E. A. Lanza, S. A. Martin, N. Myronyuk, M. Rua, and R. B. Raffa, “Diabetes mellitus and Alzheimer's disease: shared pathology and treatment?” British Journal of Clinical Pharmacology, vol. 71, no. 3, pp. 365–376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. S. M. de la Monte, “Insulin resistance and Alzheimer's disease,” BMB reports, vol. 42, pp. 475–481, 2009.
  88. F. Samad, L. Badeanlou, C. Shah, and G. Yang, “Adipose tissue and ceramide biosynthesis in the pathogenesis of obesity,” Advances in Experimental Medicine and Biology, vol. 721, pp. 67–86, 2011. View at Publisher · View at Google Scholar
  89. W. L. Holland and S. A. Summers, “Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism,” Endocrine Reviews, vol. 29, no. 4, pp. 381–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Hajduch, A. Balendran, I. H. Batty et al., “Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells,” Diabetologia, vol. 44, no. 2, pp. 173–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. C. L. Raison, L. Capuron, and A. H. Miller, “Cytokines sing the blues: inflammation and the pathogenesis of depression,” Trends in Immunology, vol. 27, no. 1, pp. 24–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. L. E. Middleton and K. Yaffe, “Promising strategies for the prevention of dementia,” Archives of Neurology, vol. 66, no. 10, pp. 1210–1215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. E. Morley, A. S. Levine, and N. E. Rowland, “Stress induced eating,” Life Sciences, vol. 32, no. 19, pp. 2169–2182, 1983. View at Scopus
  94. K. E. Zakrzewska, I. Cusin, A. Sainsbury, F. Rohner-Jeanrenaud, and B. Jeanrenaud, “Glucocorticoids as counterregulatory hormones of leptin: toward an understanding of leptin resistance,” Diabetes, vol. 46, no. 4, pp. 717–719, 1997. View at Scopus
  95. S. S. Dickerson, T. L. Gruenewald, and M. E. Kemeny, “When the social self is threatened: shame, physiology, and health,” Journal of Personality, vol. 72, no. 6, pp. 1191–1216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. K. L. K. Tamashiro, M. M. N. Nguyen, T. Fujikawa et al., “Metabolic and endocrine consequences of social stress in a visible burrow system,” Physiology and Behavior, vol. 80, no. 5, pp. 683–693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Björntorp, “Do stress reactions cause abdominal obesity and comorbidities?” Obesity Reviews, vol. 2, no. 2, pp. 73–86, 2001. View at Scopus
  98. D. P. Figlewicz and A. J. Sipols, “Energy regulatory signals and food reward,” Pharmacology Biochemistry and Behavior, vol. 97, no. 1, pp. 15–24, 2010. View at Publisher · View at Google Scholar
  99. M. Rebuffe-Scrive, K. Lundholm, and P. Bjorntorp, “Glucocorticoid hormone binding to human adipose tissue,” European Journal of Clinical Investigation, vol. 15, no. 5, pp. 267–271, 1985. View at Scopus
  100. C. B. Djurhuus, C. H. Gravholt, S. Nielsen et al., “Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans,” American Journal of Physiology, vol. 283, no. 1, pp. E172–E177, 2002. View at Scopus
  101. D. Figlewicz, “Adiposity signals and food reward :expanding the CNC roles of insulin and leptin,” American Journal of Physiology, vol. 284, pp. R882–R892, 2003.
  102. M. Alonso-Alonso and A. Pascual-Leone, “The right brain hypothesis for obesity,” Journal of the American Medical Association, vol. 297, no. 16, pp. 1819–1822, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. S. R. Waldstein and L. I. Katzel, “Interactive relations of central versus total obesity and blood pressure to cognitive function,” International Journal of Obesity, vol. 30, no. 1, pp. 201–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. M. F. Elias, A. L. Goodell, and S. R. Waldstein, “Obesity, cognitive functioning and dementia: back to the future,” Journal of Alzheimer's Disease. In press.
  105. G. Winocur, C. E. Greenwood, G. G. Piroli et al., “Memory impairment in obese zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity,” Behavioral Neuroscience, vol. 119, no. 5, pp. 1389–1395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. C. E. Greenwood and G. Winocur, “High-fat diets, insulin resistance and declining cognitive function,” Neurobiology of Aging, vol. 26, supplement 1, pp. S42–S45, 2005. View at Publisher · View at Google Scholar
  107. A. C. Granholm, H. A. Bimonte-Nelson, A. B. Moore, M. E. Nelson, L. R. Freeman, and K. Sambamurti, “Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat,” Journal of Alzheimer's Disease, vol. 14, no. 2, pp. 133–145, 2008. View at Scopus
  108. P. J. Pistell, C. D. Morrison, S. Gupta et al., “Cognitive impairment following high fat diet consumption is associated with brain inflammation,” Journal of Neuroimmunology, vol. 219, no. 1-2, pp. 25–32, 2010. View at Publisher · View at Google Scholar
  109. J. McAfoose and B. T. Baune, “Evidence for a cytokine model of cognitive function,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 3, pp. 355–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. N. P. Whitney, T. M. Eidem, H. Peng, Y. Huang, and J. C. Zheng, “Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders,” Journal of Neurochemistry, vol. 108, no. 6, pp. 1343–1359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. V. di Rienzo, M. Minelli, R. Sambugaro et al., “Applicability of extracellular electrical impedance tomography in monitoring respiratory tract inflammation,” Journal of Investigational Allergology and Clinical Immunology, vol. 17, no. 1, pp. 34–38, 2007.
  112. L. Gatta, “Study group on the application of extracellular bioimpedance tomography (Gastro-Mida(x)) in the diagnosis of colorectal diseases. The clinical role of extracellular bioimpedance tomography (Gastro-Mida(x)) in the diagnosis of colorectal diseases,” Minerva Medica, vol. 95, pp. 541–556, 2004.
  113. K. J. Ellis, “Human body composition: In Vivo methods,” Physiological Reviews, vol. 80, no. 2, pp. 649–680, 2000. View at Scopus
  114. U. G. Kyle, I. Bosaeus, A. D. de Lorenzo, et al., “Composition of the ESPEN working group. Bioelectrical impedance analysis—part I: review of principles and methods,” Clinical Nutrition, vol. 23, pp. 1226–1243, 2004.
  115. M. Y. Jaffrin and H. Morel, “Body fluid volumes measurements by impedance: a review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods,” Medical Engineering and Physics, vol. 30, no. 10, pp. 1257–1269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. H. van Praag, “Exercise and the brain: something to chew on,” Trends in Neurosciences, vol. 32, no. 5, pp. 283–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. F. Gómez-Pinilla, “Brain foods: the effects of nutrients on brain function,” Nature Reviews Neuroscience, vol. 9, no. 7, pp. 568–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. J. P. E. Spencer, “Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance,” Proceedings of the Nutrition Society, vol. 67, no. 2, pp. 238–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. J. D. Finkelstein and J. J. Martin, “Homocysteine,” International Journal of Biochemistry and Cell Biology, vol. 32, no. 4, pp. 385–389, 2000. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Seshadri, “Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer's disease?” Journal of Alzheimer's Disease, vol. 9, no. 4, pp. 393–398, 2006. View at Scopus
  121. F. van Dam and W. A. Van Gool, “Hyperhomocysteinemia and Alzheimer's disease: a systematic review,” Archives of Gerontology and Geriatrics, vol. 48, no. 3, pp. 425–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. P. S. Aisen, L. S. Schneider, M. Sano et al., “High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial,” Journal of the American Medical Association, vol. 300, no. 15, pp. 1774–1783, 2008. View at Publisher · View at Google Scholar
  123. C. Qiu, M. Kivipelto, and E. von Strauss, “Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention,” Dialogues in Clinical Neuroscience, vol. 11, no. 2, pp. 111–128, 2009. View at Scopus
  124. D. Kapogiannis and M. P. Mattson, “Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease,” The Lancet Neurology, vol. 10, no. 2, pp. 187–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. V. Mikhail, “Blagosklonny: hormesis does not make sense except in the light of TOR-driven aging,” Aging, vol. 3, pp. 1015–1062, 2011.
  126. P. Fabrizio and M. Wei, “Conserved role of medium acidification in chronological senescence of yeast and mammalian cells,” Aging, vol. 3, no. 12, pp. 1127–1129, 2011.
  127. Y. Pan and G. S. Shadel, “Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density,” Aging, vol. 1, no. 1, pp. 131–145, 2009. View at Scopus