About this Journal Submit a Manuscript Table of Contents
Cholesterol
Volume 2010 (2010), Article ID 271504, 13 pages
http://dx.doi.org/10.1155/2010/271504
Review Article

Lipid Metabolism and Cardiovascular Risk in HIV-1 Infection and HAART: Present and Future Problems

11st Division of Infectious Diseases, “Luigi Sacco” Hospital, Via GB Grassi, 74, 20157 Milan, Italy
2Clinical Pharmacology Unit, “Luigi Sacco” Hospital, 20157 Milan, Italy

Received 28 April 2010; Revised 15 August 2010; Accepted 7 September 2010

Academic Editor: Gloria L. Vega

Copyright © 2010 Sara Melzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Danesh, R. Collins, and R. Peto, “Chronic infections and coronary heart disease: is there a link?” The Lancet, vol. 350, no. 9075, pp. 430–436, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. K. J. Mattila, V. V. Valtonen, M. S. Nieminen, and S. Asikainen, “Role of infection as a risk factor for atherosclerosis, myocardial infarction, and stroke,” Clinical Infectious Diseases, vol. 26, no. 3, pp. 719–734, 1998. View at Scopus
  3. S. E. Epstein, Y. F. Zhou, and J. Zhu, “Infection and atherosclerosis: emerging mechanistic paradigms,” Circulation, vol. 100, no. 4, pp. e20–e28, 1999. View at Scopus
  4. C. R. Meier, S. S. Jick, L. E. Derby, C. Vasilakis, and H. Jick, “Acute respiratory-tract infections and risk of first-time acute myocardial infarction,” The Lancet, vol. 351, no. 9114, pp. 1467–1471, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Grunfeld and K. R. Feingold, “Tumor necrosis factor, interleukin, and interferon induced changes in lipid metabolism as part of host defense,” Proceedings of the Society for Experimental Biology and Medicine, vol. 200, no. 2, pp. 224–227, 1992. View at Scopus
  6. M. Leinonen and P. Saikku, “Evidence for infectious agents in cardiovascular disease and atherosclerosis,” Lancet Infectious Diseases, vol. 2, no. 1, pp. 11–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zhu, A. A. Quyyumi, J. E. Norman, G. Csako, M. A. Waclawiw, G. M. Shearer, and S. E. Epstein, “Effects of total pathogen burden on coronary artery disease risk and C-reactive protein levels,” American Journal of Cardiology, vol. 85, no. 2, pp. 140–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Roivainen, G. Alfthan, P. Jousilahti, M. Kimpimäki, T. Hovi, and J. Tuomilehto, “Enterovirus infections as a possible risk factor for myocardial infarction,” Circulation, vol. 98, no. 23, pp. 2534–2537, 1998. View at Scopus
  9. L. Broxmeyer, “Heart disease: the greatest 'risk' factor of them all,” Medical Hypotheses, vol. 62, no. 5, pp. 773–779, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. Rasheed, J. S. Yan, A. Lau, and A. S. Chan, “HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study,” PLoS ONE, vol. 3, no. 8, Article ID e3003, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. K. Hellerstein, C. Grunfeld, K. Wu, M. Christiansen, S. Kaempfer, C. Kletke, and C. H. L. Shackleton, “Increased de novo hepatic lipogenesis in human immunodeficiency virus infection,” Journal of Clinical Endocrinology and Metabolism, vol. 76, no. 3, pp. 559–565, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Riddler, E. Smit, and E. Smit, “Impact of HIV infection and HAART on serum lipids in men,” Journal of the American Medical Association, vol. 289, no. 22, pp. 2978–2982, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. L. Anderson, “Infection, antibiotics, and atherothrombosis—end of the road or new beginnings?” The New England Journal of Medicine, vol. 352, no. 16, pp. 1706–1709, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. Cicognani, M. Malavolti, A. M. Morselli-Labate, L. Zamboni, C. Sama, and L. Barbara, “Serum lipid and lipoprotein patterns in patients with liver cirrhosis and chronic active hepatitis,” Archives of Internal Medicine, vol. 157, no. 7, pp. 792–796, 1997. View at Scopus
  15. J. S. Currier, J. D. Lundgren, and J. D. Lundgren, “Epidemiological evidence for cardiovascular disease in HIV-infected patients and relationship to highly active antiretroviral therapy,” Circulation, vol. 118, no. 2, pp. e29–e35, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. Lai, E. K. Fishman, and E. K. Fishman, “Long-term cocaine use and antiretroviral therapy are associated with silent coronary artery disease in African Americans with HIV infection who have no cardiovascular symptoms,” Clinical Infectious Diseases, vol. 46, no. 4, pp. 600–610, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. E. Martínez, A. Milinkovic, and A. Milinkovic, “Incidence and causes of death in HIV-infected persons receiving highly active antiretroviral therapy compared with estimates for the general population of similar age and from the same geographical area,” HIV Medicine, vol. 8, no. 4, pp. 251–258, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. E. A. Eugenin, S. Morgello, M. E. Klotman, A. Mosoian, P. A. Lento, J. W. Berman, and A. D. Schecter, “Human immunodeficiency virus (HIV) infects human arterial smooth muscle cells in vivo and in vitro: implications for the pathogenesis of HIV-mediated vascular disease,” American Journal of Pathology, vol. 172, no. 4, pp. 1100–1111, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. F. J. Torriani, L. Komarow, and L. Komarow, “Endothelial function in human immunodeficiency virus-infected antiretroviral-naive subjects before and after starting potent antiretroviral therapy. The ACTG (AIDS Clinical Trials Group) study 5152s,” Journal of the American College of Cardiology, vol. 52, no. 7, pp. 569–576, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. D. Francisci, S. Giannini, and S. Giannini, “HIV type 1 infection, and not short-term HAART, induces endothelial dysfunction,” AIDS, vol. 23, no. 5, pp. 589–596, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. SMART Study Group, “CD4+-guided interruption of antiretroviral treatment,” The New England Journal of Medicine, vol. 355, pp. 2283–2296, 2006.
  22. P. Tebas, W. K. Henry, and W. K. Henry, “Metabolic and immune activation effects of treatment interruption in chronic HIV-1 infection: implications for cardiovascular risk,” PLoS ONE, vol. 3, no. 4, Article ID e2021, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. N. Friis-Møller, P. Reiss, and P. Reiss, “Class of antiretroviral drugs and the risk of myocardial infarction,” The New England Journal of Medicine, vol. 356, no. 17, pp. 1723–1735, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. W. Worm, C. Sabin, and C. Sabin, “Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study,” Journal of Infectious Diseases, vol. 201, no. 3, pp. 318–330, 2010. View at Publisher · View at Google Scholar · View at PubMed
  25. D. Cooper, M. Bloch, A. Humphries, et al., “Simplification with fixed-dose Tenofovir/Emtricitabine or Abacavir/Lamivudine in adults with suppressed HIV replication: the STEAL study, a randomized, open-label, 96-week, non-inferiority trial,” in Proceedings of the 16th Conference on Retroviruses and. Opportunistic Infections (CROI '10), Montréal, Canada, February 2009, abstract no. 576.
  26. E. Martínez, J. A. Arranz, and J. A. Arranz, “A simplification trial switching from nucleoside reverse transcriptase inhibitors to once-daily fixed-dose abacavir/lamivudine or tenofovir/ emtricitabine in HIV-1-infected patients with virological suppression,” Journal of Acquired Immune Deficiency Syndromes, vol. 51, no. 3, pp. 290–297, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. P. E. Sax, C. Tierney, and C. Tierney, “Abacavir-lamivudine versus tenofovir-emtricitabine for initial HIV-1 therapy,” The New England Journal of Medicine, vol. 361, no. 23, pp. 2230–2240, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. S. Walmsley, A. Avihingsanon, and A. Avihingsanon, “Gemini: a noninferiority study of saquinavir/ritonavir versus lopinavir/ritonavir as initial HIV-I therapy in adults,” Journal of Acquired Immune Deficiency Syndromes, vol. 50, no. 4, pp. 367–374, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. Eron Jr., P. Yeni, and P. Yeni , “The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial,” The Lancet, vol. 368, no. 9534, pp. 476–482, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J.-M. Molina, J. Andrade-Villanueva, and J. Andrade-Villanueva, “Once-daily atazanavir/ritonavir compared with twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naïve HIV-1-infected patients: 96-week efficacy and safety results of the CASTLE study,” Journal of Acquired Immune Deficiency Syndromes, vol. 53, no. 3, pp. 323–332, 2010. View at Publisher · View at Google Scholar · View at PubMed
  31. A. M. Mills, M. Nelson, and M. Nelson, “Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis,” AIDS, vol. 23, no. 13, pp. 1679–1688, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. P. Dubé, J. H. Stein, and J. H. Stein, “Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medicine Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group,” Clinical Infectious Diseases, vol. 37, no. 5, pp. 613–627, 2003. View at Publisher · View at Google Scholar · View at PubMed
  33. http://www.europeanaidsclinicalsociety.org/guidelinespdf/1_Treatment_of_HIV_Infected_Adults.pdf.
  34. A. Milinkovic, E. Martinez, and E. Martinez, “The impact of reducing stavudine dose versus switching to tenofovir on plasma lipids, body composition and mitochondrial function in HIV-infected patients,” Antiviral Therapy, vol. 12, no. 3, pp. 407–415, 2007.
  35. J. M. Llibre, P. Domingo, and P. Domingo, “Sustained improvement of dyslipidaemia in HAART-treated patients replacing stavudine with tenofovir,” AIDS, vol. 20, no. 10, pp. 1407–1414, 2006. View at Publisher · View at Google Scholar · View at PubMed
  36. A. Viganò, G. M. Aldrovandi, and G. M. Aldrovandi, “Improvement in dyslipidaemia after switching stavudine to tenofovir and replacing protease inhibitors with efavirenz in HIV-infected children,” Antiviral Therapy, vol. 10, no. 8, pp. 917–924, 2005.
  37. D. Salmon-Ceron, A. Lazzarin, and A. Lazzarin, “Efficacy and safety of atazanavir-based highly active antiretroviral therapy in patients with virologic suppression switched from a stable, boosted or unboosted protease inhibitor treatment regimen: the SWAN study (AI424-097) 48-week results,” Clinical Infectious Diseases, vol. 44, no. 11, pp. 1484–1492, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. G. J. Class, B. Jülg, J. Röling, F. D. Goebel, and J. R. Bogner, “Metabolic and anthropometric changes one year after switching from Didanosine/Stavudine to Tenofovir in HIV-infected patients,” European Journal of Medical Research, vol. 12, no. 2, pp. 54–60, 2007.
  39. M. A. Valantin, R. Bittar, and R. Bittar, “Switching the nucleoside reverse transcriptase inhibitor backbone to tenofovir disoproxil fumarate+emtricitabine promptly improves triglycerides and low-density lipoprotein cholesterol in dyslipidaemic patients,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 3, pp. 556–561, 2010. View at Publisher · View at Google Scholar · View at PubMed
  40. J.-J. Parienti, V. Massari, D. Rey, P. Poubeau, and R. Verdon, “Efavirenz to nevirapine switch in HIV-1—infected patients with dyslipidemia: a randomized, controlled study,” Clinical Infectious Diseases, vol. 45, no. 2, pp. 263–266, 2007. View at Publisher · View at Google Scholar · View at PubMed
  41. J. J. Eron, B. Young, and B. Young, “Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials,” The Lancet, vol. 375, no. 9712, pp. 396–407, 2010. View at Publisher · View at Google Scholar
  42. P. Tebas, J. Zhang, and J. Zhang, “Switching to a protease inhibitor-containing, nucleoside-sparing regimen (lopinavir/ritonavir plus efavirenz) increases limb fat but raises serum lipid levels: results of a prospective randomized trial (AIDS clinical trial group 5125s),” Journal of Acquired Immune Deficiency Syndromes, vol. 45, no. 2, pp. 193–200, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. A. J. Busti, R. Bedimo, D. M. Margolis, and D. S. Hardin, “Improvement in insulin sensitivity and dyslipidemia in protease inhibitor-treated adult male patients after switch to atazanavir/ritonavir,” Journal of Investigative Medicine, vol. 56, no. 2, pp. 539–544, 2008.
  44. J. Mallolas, D. Podzamczer, and D. Podzamczer, “Efficacy and safety of switching from boosted lopinavir to boosted atazanavir in patients with virological suppression receiving a lpv/r-containing haart: the atazip study,” Journal of Acquired Immune Deficiency Syndromes, vol. 51, no. 1, pp. 29–36, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. S. T. Nguyen, S. A. Eaton, and S. A. Eaton, “Lipid-lowering efficacy and safety after switching to atazanavir-ritonavir-based highly active antiretroviral therapy in patients with human immunodeficiency virus,” Pharmacotherapy, vol. 28, no. 3, pp. 323–330, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. V. Soriano, P. García-Gasco, and P. García-Gasco, “Efficacy and safety of replacing lopinavir with atazanavir in HIV-infected patients with undetectable plasma viraemia: final results of the SLOAT trial,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 1, pp. 200–205, 2008. View at Publisher · View at Google Scholar · View at PubMed
  47. J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001.
  48. M. Tungsiripat and J. A. Aberg, “Dyslipidemia in HIV patients,” Cleveland Clinic Journal of Medicine, vol. 72, no. 12, pp. 1113–1120, 2005. View at Publisher · View at Google Scholar
  49. V. Sekar, S. Spinosa-Guzman, and K. Marien, “Pharmacokinetic drug-drug interaction between the new HIV protease inhibitor darunavir (TMC114) and the lipid-lowering agent pravastatin,” in Proceedings of the 8th International Workshop on Clinical Pharmacology of HIV Therapy, Budapest, Hungary, April 2007, abstract no. 54.
  50. C. J. Fichtenbaum and J. G. Gerber, “Interactions between antiretroviral drugs and drugs used for the therapy of the metabolic complications encountered during HIV infection,” Clinical Pharmacokinetics, vol. 41, no. 14, pp. 1195–1211, 2002.
  51. G. J. Moyle, M. Lloyd, B. Reynolds, C. Baldwin, S. Mandalia, and B. G. Gazzard, “Dietary advice with or without pravastatin for the management of hypercholesterolaemia associated with protease inhibitor therapy,” AIDS, vol. 15, no. 12, pp. 1503–1508, 2001. View at Publisher · View at Google Scholar
  52. J. G. Gerber, S. L. Rosenkranz, and S. L. Rosenkranz, “Effect of efavirenz on the pharmacokinetics of simvastatin, atorvastatin, and pravastatin: results of AIDS clinical trials group 5108 study,” Journal of Acquired Immune Deficiency Syndromes, vol. 39, no. 3, pp. 307–312, 2005. View at Publisher · View at Google Scholar
  53. J. J. Kiser, J. G. Gerber, J. A. Predhomme, P. Wolfe, D. M. Flynn, and D. W. Hoody, “Drug/drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers,” Journal of Acquired Immune Deficiency Syndromes, vol. 47, no. 5, pp. 570–578, 2008. View at Publisher · View at Google Scholar · View at PubMed
  54. M. van der Lee, R. Sankatsing, and R. Sankatsing, “Pharmacokinetics and pharmacodynamics of combined use of lopinavir/ritonavir and rosuvastatin in HIV-infected patients,” Antiviral Therapy, vol. 12, no. 7, pp. 1127–1132, 2007.
  55. F. De Lorenzo, M. Boffito, S. Collot-Teixeira, B. Gazzard, J. L. McGregor, K. Shotliff, and H. Xiao, “Prevention of atherosclerosis in patients living with HIV,” Vascular Health and Risk Management, vol. 5, no. 1, pp. 287–300, 2009.
  56. E. Negredo, J. Moltó, and J. Moltó, “Ezetimibe, a promising lipid-lowering agent for the treatment of dyslipidaemia in HIV-infected patients with poor response to statins,” AIDS, vol. 20, no. 17, pp. 2159–2164, 2006. View at Publisher · View at Google Scholar · View at PubMed
  57. D. Wohl, P. Hsue, S. Richard, et al., “Ezetimibe’s effects on the LDL cholesterol levels of HIV-infected patients receiving HAART,” in Proceedings of the 14th Conference on Retroviruses and. Opportunistic Infections (CROI '07), Los Angeles, Calif, USA, 2007, abstract no. 39.
  58. M. T. Bennett, K. W. Johns, and G. P. Bondy, “Ezetimibe is effective when added to maximally tolerated lipid lowering therapy in patients with HIV,” Lipids in Health and Disease, vol. 6, Article ID 15, 2007. View at Publisher · View at Google Scholar · View at PubMed
  59. J. Miller, D. Brown, and D. Brown, “A randomized, double-blind study of gemfibrozil for the treatment of protease inhibitor-associated hypertriglyceridaemia,” AIDS, vol. 16, no. 16, pp. 2195–2200, 2002. View at Publisher · View at Google Scholar
  60. J. A. Aberg, R. A. Zackin, and R. A. Zackin, “A randomized trial of the efficacy and safety of fenofibrate versus pravastatin in HIV-infected subjects with lipid abnormalities: AIDS Clinical Trials Group study 5087,” AIDS Research and Human Retroviruses, vol. 21, no. 9, pp. 757–767, 2005. View at Publisher · View at Google Scholar · View at PubMed
  61. C. J. Fichtenbaum, T.-M. Yeh, S. R. Evans, et al., “Changes in markers of atherogenic dyslipidemia, inflammation, and platelet activation with treatment with pravastatin, fenofibrate, or the combination: results from ACTG A5087,” in Proceedings of the 15th Conference on Retroviruses and. Opportunistic Infections (CROI '08), Boston, Mass, USA, 2008, abstract no. 932.
  62. M. J. Silverberg, W. Levden, L. Hurley, A. S. Go, C. P. Quesenberry Jr., D. Klein, and M. A. Horberg, “Response to newly prescribed lipid-lowering therapy in patients with and without HIV infection,” Annals of Internal Medicine, vol. 150, no. 5, pp. 301–313, 2009.
  63. J. G. Gerber, D. W. Kitch, and D. W. Kitch, “Fish oil and fenofibrate for the treatment of hypertriglyceridemia in HIV-infected subjects on antiretroviral therapy: results of ACTG A5186,” Journal of Acquired Immune Deficiency Syndromes, vol. 47, no. 4, pp. 459–466, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. P. De Truchis, M. Kirstetter, and M. Kirstetter, “Reduction in triglyceride level with N-3 polyunsaturated fatty acids in HIV-infected patients taking potent antiretroviral therapy: a randomized prospective study,” Journal of Acquired Immune Deficiency Syndromes, vol. 44, no. 3, pp. 278–285, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. G. Carosi, E. Quiros-Roldan, and E. Quiros-Roldan, “First Italian consensus statement on diagnosis, prevention and treatment of cardiovascular complications in HIV-infected patients in the HAART era (2006),” Infection, vol. 35, no. 3, pp. 134–142, 2007. View at Publisher · View at Google Scholar · View at PubMed
  66. G. M. N. Behrens and P. Reiss, “Abacavir and cardiovascular risk,” Current Opinion in Infectious Diseases, vol. 23, no. 1, pp. 9–14, 2010. View at Publisher · View at Google Scholar · View at PubMed
  67. J. R. Arribas López, “Secondary effects of treatment with maraviroc and other CCR5 antagonists. Potential impact of the CCR5 blocker,” Enfermedades Infecciosas y Microbiología Clínica, vol. 26, supplement 11, pp. 23–27, 2008. View at Publisher · View at Google Scholar
  68. P. H. Keiser, M. G. Sension, and M. G. Sension, “Substituting abacavir for hyperlipidemia-associated protease inhibitors in HAART regimens improves fasting lipid profiles, maintains virologic suppression, and simplifies treatment,” BMC Infectious Diseases, vol. 5, no. 1, article 2, 2005. View at Publisher · View at Google Scholar · View at PubMed
  69. C. Katlama, B. Gazzard, and B. Gazzard, “Comparison of metabolic abnormalities 48 weeks after switching from highly active antiretroviral therapy containing a non-nucleoside reverse transcriptase inhibitor to Trizivir versus continued highly active antiretroviral therapy,” AIDS, vol. 17, no. 12, pp. 1855–1856, 2003. View at Publisher · View at Google Scholar
  70. A. Lafeuillade, N. Clumeck, and N. Clumeck, “Comparison of metabolic abnormalities and clinical lipodystrophy 48 weeks after switching from HAART to Trizivir versus continued HAART: the trizal study,” HIV Clinical Trials, vol. 4, no. 1, pp. 37–43, 2003. View at Publisher · View at Google Scholar
  71. G. Rizzardini and A. Capetti, “Switch to abacavir-based triple nucleoside regimens in HIV-1 infected patients never treated with suboptimal antiretroviral therapy: a review,” Medical Science Monitor, vol. 12, no. 12, pp. RA269–RA276, 2006.
  72. E. Martínez, J. A. Arnaiz, and J. A. Arnaiz, “Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with human immunodeficiency virus infection,” The New England Journal of Medicine, vol. 349, no. 11, pp. 1036–1046, 2003. View at Publisher · View at Google Scholar · View at PubMed
  73. E. Negredo, L. Cruz, and L. Cruz, “Virological, immunological, and clinical impact of switching from protease inhibitors to nevirapine or to efavirenz in patients with human immunodeficiency virus infection and long-lasting viral suppression,” Clinical Infectious Diseases, vol. 34, no. 4, pp. 504–510, 2002. View at Publisher · View at Google Scholar · View at PubMed
  74. L. Ruiz, E. Negredo, and E. Negredo, “Antiretroviral treatment simplification with nevirapine in protease inhibitor—experienced patients with HIV-associated lipodystrophy: 1-year prospective follow-up of a multicenter, randomized, controlled study,” Journal of Acquired Immune Deficiency Syndromes, vol. 27, no. 3, pp. 229–236, 2001.
  75. J. M. Petit, M. Duong, and M. Duong, “Serum adiponectin and metabolic parameters in HIV-I-infected patients after substitution of nevirapine for protease inhibitors,” European Journal of Clinical Investigation, vol. 34, no. 8, pp. 569–575, 2004. View at Publisher · View at Google Scholar · View at PubMed
  76. M. I. Gonzalez-Tome, J. T. R. Amador, J. M. Peña, M. L. N. Gomez, P. R. Conejo, and P. M. Fontelos, “Outcome of protease inhibitor substitution with nevirapine in HIV-1 infected children,” BMC Infectious Diseases, vol. 8, Article ID 144, 2008. View at Publisher · View at Google Scholar · View at PubMed
  77. V. Estrada, N. G. P. De Villar, M. T. M. Larrad, A. G. López, C. Fernández, and M. Serrano-Rios, “Long-term metabolic consequences of switching from protease inhibitors to efavirenz in therapy for human immunodeficiency virus-infected patients with lipoatrophy,” Clinical Infectious Diseases, vol. 35, no. 1, pp. 69–76, 2002. View at Publisher · View at Google Scholar · View at PubMed
  78. D. J. Ward and J. M. Curtin, “Switch from efavirenz to nevirapine associated with resolution of efavirenz-related neuropsychiatric adverse events and improvement in lipid profiles,” AIDS Patient Care and STDs, vol. 20, no. 8, pp. 542–548, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. C. K. Schewe, R. Maserati, G. Wassmer, A. Adam, and L. Weitner, “Improved lipid profiles and maintenance of virologic control in heavily pretreated hiv-infected patients who switched from stavudine to tenofovir treatment,” Clinical Infectious Diseases, vol. 42, no. 1, pp. 145–147, 2006. View at Publisher · View at Google Scholar · View at PubMed
  80. J. V. R. Madruga, I. Cassetti, and I. Cassetti, “The safety and efficacy of switching stavudine to tenofovir DF in combination with lamivudine and efavirenz in HIV-1-infected patients: three-year follow-up after switching therapy,” HIV Clinical Trials, vol. 8, no. 6, pp. 381–390, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. J. Ananworanich, R. Nuesch, and R. Nuesch, “Changes in metabolic toxicity after switching from stavudine/didanosine to tenofovir/lamivudine—a staccato trial substudy,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 6, pp. 1340–1343, 2008. View at Publisher · View at Google Scholar · View at PubMed
  82. E. Ribera, J. C. Paradiñeiro, and J. C. Paradiñeiro, “Improvements in subcutaneous fat, lipid profile, and parameters of mitochondrial toxicity in patients with peripheral lipoatrophy when stavudine is switched to tenofovir (LIPOTEST Study),” HIV Clinical Trials, vol. 9, no. 6, pp. 407–417, 2008. View at Publisher · View at Google Scholar · View at PubMed
  83. U. Möbius, M. Lubach-Ruitman, and M. Lubach-Ruitman, “Switching to atazanavir improves metabolic disorders in antiretroviral-experienced patients with severe hyperlipidemia,” Journal of Acquired Immune Deficiency Syndromes, vol. 39, no. 2, pp. 174–180, 2005.
  84. M. Sension, J. L. De Andrade Neto, and J. L. De Andrade Neto, “Improvement in lipid profiles in antiretroviral-experienced HIV-positive patients with hyperlipidemia after a switch to unboosted atazanavir,” Journal of Acquired Immune Deficiency Syndromes, vol. 51, no. 2, pp. 153–162, 2009. View at Publisher · View at Google Scholar · View at PubMed
  85. A. J. Flammer, N. T. T. Vo, and N. T. T. Vo, “Effect of atazanavir versus other protease inhibitor-containing antiretroviral therapy on endothelial function in HIV-infected persons: randomised controlled trial,” Heart, vol. 95, no. 5, pp. 385–390, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. R. L. Murphy, B. Berzins, and B. Berzins, “Change to atazanavir/ritonavir treatment improves lipids but not endothelial function in patients on stable antiretroviral therapy,” AIDS, vol. 24, no. 6, pp. 885–890, 2010. View at Publisher · View at Google Scholar · View at PubMed
  87. M. Colafigli, S. Di Giambenedetto, L. Bracciale, E. Tamburrini, R. Cauda, and A. De Luca, “Cardiovascular risk score change in HIV-1-infected patients switched to an atazanavir-based combination antiretroviral regimen,” HIV Medicine, vol. 9, no. 3, pp. 172–179, 2008. View at Publisher · View at Google Scholar · View at PubMed