About this Journal Submit a Manuscript Table of Contents
Cholesterol
Volume 2012 (2012), Article ID 571846, 12 pages
http://dx.doi.org/10.1155/2012/571846
Review Article

Immune Response to Lipoproteins in Atherosclerosis

1Department of Molecular Immunology, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, 258/A, Bommasandra Industrial Area, Bangalore 560099, India
2Scientific Chairman, Thrombosis Research Institute, London, UK

Received 4 June 2012; Accepted 24 July 2012

Academic Editor: Michael Ibrahim

Copyright © 2012 Sonia Samson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Greenland, M. D. Knoll, J. Stamler et al., “Major risk factors as antecedents of fatal and nonfatal coronary heart disease events,” Journal of the American Medical Association, vol. 290, no. 7, pp. 891–897, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Scopus
  3. C. Baigent, “Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins,” The Lancet, vol. 366, no. 9493, pp. 1267–1278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Paoletti, A. M. Gotto, and D. P. Hajjar, “Inflammation in atherosclerosis and implications for therapy,” Circulation, vol. 109, no. 23, supplement, pp. III20–III26, 2004. View at Scopus
  5. G. K. Hansson and P. Libby, “The immune response in atherosclerosis: a double-edged sword,” Nature Reviews Immunology, vol. 6, no. 7, pp. 508–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. A. Cuneo and M. V. Autieri, “Expression and function of anti-inflammatory interleukins: the other side of the vascular response to injury,” Current Vascular Pharmacology, vol. 7, no. 3, pp. 267–276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. K. Hansson, “Mechanisms of disease: inflammation, atherosclerosis, and coronary artery disease,” New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Steinberg, “Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime,” Nature Medicine, vol. 8, no. 11, pp. 1211–1217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Schwenke and T. E. Carew, “Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries,” Arteriosclerosis, vol. 9, no. 6, pp. 908–918, 1989. View at Scopus
  10. K. Olin-Lewis, R. M. Krauss, M. La Belle et al., “ApoC-III content of apoB-containing lipoproteins is associated with binding to the vascular proteoglycan biglycan,” Journal of Lipid Research, vol. 43, no. 11, pp. 1969–1977, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Hevonoja, M. O. Pentikäinen, M. T. Hyvönen, P. T. Kovanen, and M. Ala-Korpela, “Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL,” Biochimica et Biophysica Acta, vol. 1488, no. 3, pp. 189–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Riley, V. Dasari, W. H. Frishman, and K. Sperber, “Vaccines in development to prevent and treat atherosclerotic disease,” Cardiology in Review, vol. 16, no. 6, pp. 288–300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Gu, Y. Okada, S. K. Clinton et al., “Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice,” Molecular Cell, vol. 2, no. 2, pp. 275–281, 1998. View at Scopus
  14. L. Boring, J. Gosling, M. Cleary, and I. F. Charo, “Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis,” Nature, vol. 394, no. 6696, pp. 894–897, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. G. K. Hansson and A. Hermansson, “The immune system in atherosclerosis,” Nature Immunology, vol. 12, no. 3, pp. 204–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Xu, “Role of heat shock proteins in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 10, pp. 1547–1559, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Stemme and G. K. Hansson, “Immune mechanisms in atherosclerosis,” Coronary Artery Disease, vol. 5, no. 3, pp. 216–222, 1994. View at Scopus
  18. O. J. De Boer, A. C. Van der Wal, M. A. Houtkamp, J. M. Ossewaarde, P. Teeling, and A. E. Becker, “Unstable atherosclerotic plaques contain T-cells that respond to Chlamydia pneumoniae,” Cardiovascular Research, vol. 48, no. 3, pp. 402–408, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. A. K. L. Robertson and G. K. Hansson, “T cells in atherogenesis: for better or for worse?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 11, pp. 2421–2432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Frostegård, A. K. Ulfgren, P. Nyberg et al., “Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines,” Atherosclerosis, vol. 145, no. 1, pp. 33–43, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Methe, S. Brunner, D. Wiegand, M. Nabauer, J. Koglin, and E. R. Edelman, “Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes,” Journal of the American College of Cardiology, vol. 45, no. 12, pp. 1939–1945, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. K. Agrawal and Z. Shao, “Pathogenesis of allergic airway inflammation,” Current Allergy and Asthma Reports, vol. 10, no. 1, pp. 39–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Huber, P. Sakkinen, C. David, M. K. Newell, and R. P. Tracy, “T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia,” Circulation, vol. 103, no. 21, pp. 2610–2616, 2001. View at Scopus
  24. V. L. King, S. J. Szilvassy, and A. Daugherty, “Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/- mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 3, pp. 456–461, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Cheng, X. Yu, Y.-j. Ding et al., “The Th17/Treg imbalance in patients with acute coronary syndrome,” Clinical Immunology, vol. 127, no. 1, pp. 89–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. G. L. Stephens and E. M. Shevach, “Foxp3+ regulatory T cells: selfishness under scrutiny,” Immunity, vol. 27, no. 3, pp. 417–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. E. M. Shevach, “Mechanisms of Foxp3+ T regulatory cell-mediated suppression,” Immunity, vol. 30, no. 5, pp. 636–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Andersson, P. Libby, and G. K. Hansson, “Adaptive immunity and atherosclerosis,” Clinical Immunology, vol. 134, no. 1, pp. 33–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. J. Binder, M. K. Chang, P. X. Shaw et al., “Innate and acquired immunity in atherogenesis,” Nature Medicine, vol. 8, no. 11, pp. 1218–1226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. C. J. Binder, P. X. Shaw, M.-K. Chang et al., “The role of natural antibodies in atherogenesis,” Journal of Lipid Research, vol. 46, no. 7, pp. 1353–1363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. G. S. Getz, “Bridging the innate and adaptive immune systems,” Journal of Lipid Research, vol. 46, no. 4, pp. 619–622, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. G. S. Getz, “Thematic review series: the immune system and atherogenesis. Immune function in atherogenesis,” Journal of Lipid Research, vol. 46, no. 1, pp. 1–10, 2005. View at Scopus
  35. G. K. Hansson, “Immune and inflammatory mechanisms in the pathogenesis of atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 1, supplement, pp. S6–S9, 1994. View at Scopus
  36. G. K. Hansson, “Immune mechanisms in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 12, pp. 1876–1890, 2001. View at Scopus
  37. G. K. Hansson, “Regulation of immune mechanisms in atherosclerosis,” Annals of the New York Academy of Sciences, vol. 947, pp. 157–166, 2001. View at Scopus
  38. G. K. Hansson, “Atherosclerosis-An immune disease. The Anitschkov Lecture 2007,” Atherosclerosis, vol. 202, no. 1, pp. 2–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. G. K. Hansson, “Inflammatory mechanisms in atherosclerosis,” Journal of Thrombosis and Haemostasis, vol. 7, supplement 1, pp. 328–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Libby, P. M. Ridker, and G. K. Hansson, “Inflammation in atherosclerosis. From pathophysiology to practice,” Journal of the American College of Cardiology, vol. 54, no. 23, pp. 2129–2138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. G. K. Hansson, A.-K. L. Robertson, and C. Söderberg-Nauclér, “Inflammation and atherosclerosis,” Annual Review of Pathology, vol. 1, pp. 297–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. P. X. Shaw, S. Hörkkö, M. K. Chang et al., “Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity,” Journal of Clinical Investigation, vol. 105, no. 12, pp. 1731–1740, 2000. View at Scopus
  44. W. Palinski and J. L. Witztum, “Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis,” Journal of Internal Medicine, vol. 247, no. 3, pp. 371–380, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Esterbauer, M. Dieber-Rotheneder, G. Waeg, G. Striegl, and G. Jurgens, “Biochemical, structural, and functional properties of oxidized low-density lipoprotein,” Chemical Research in Toxicology, vol. 3, no. 2, pp. 77–92, 1990. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Yia-Herttuala, W. Palinski, M. E. Rosenfeld et al., “Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man,” Journal of Clinical Investigation, vol. 84, no. 4, pp. 1086–1095, 1989. View at Scopus
  47. N. M. Gharavi, J. A. Alva, K. P. Mouillesseaux et al., “Role of the JAK/STAT pathway in the regulation of interleukin-8 transcription by oxidized phospholipids in vitro and in atherosclerosis in vivo,” Journal of Biological Chemistry, vol. 282, no. 43, pp. 31460–31468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Svensjö, P. Boschcov, D. F. J. Ketelhuth, S. Jancar, and M. Gidlund, “Increased microvascular permeability in the hamster cheek pouch induced by oxidized low density lipoprotein (oxLDL) and some fragmented apolipoprotein B proteins,” Inflammation Research, vol. 52, no. 5, pp. 215–220, 2003. View at Scopus
  49. D. F. J. Ketelhuth and G. K. Hansson, “Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall,” Thrombosis and Haemostasis, vol. 106, no. 5, pp. 779–786, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, “Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity,” New England Journal of Medicine, vol. 320, no. 14, pp. 915–924, 1989. View at Scopus
  51. G. K. Hansson, “Vaccination against atherosclerosis: acience or fiction?” Circulation, vol. 106, no. 13, pp. 1599–1601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Stemme, B. Faber, J. Holm, O. Wiklund, J. L. Witztum, and G. K. Hansson, “T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 9, pp. 3893–3897, 1995. View at Scopus
  53. S.-I. Toshima, A. Hasegawa, M. Kurabayashi et al., “Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 10, pp. 2243–2247, 2000. View at Scopus
  54. P. Holvoet, J. Vanhaecke, S. Janssens, F. Van De Werf, and D. Collen, “Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease,” Circulation, vol. 98, no. 15, pp. 1487–1494, 1998. View at Scopus
  55. H. C. Boyd, A. M. Gown, G. Wolfbauer, and A. Chait, “Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit,” American Journal of Pathology, vol. 135, no. 5, pp. 815–825, 1989. View at Scopus
  56. S. D. Cushing, J. A. Berliner, A. J. Valente et al., “Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 13, pp. 5134–5138, 1990. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Steinberg, “The LDL modification hypothesis of atherogenesis: an update,” Journal of Lipid Research, vol. 50, pp. S376–S381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. E. A. Dennis and J. L. Witztum, “Fifty years of research on lipids,” Journal of Lipid Research, vol. 50, supplement, p. S1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Baumgarth, J. W. Tung, and L. A. Herzenberg, “Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion,” Springer Seminars in Immunopathology, vol. 26, no. 4, pp. 347–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Masmoudi, T. Mota-Santos, F. Huetz, A. Coutinho, and P. A. Cazenave, “All T15 Id-positive antibodies (but not the majority of V(H)T15+ antibodies) are produced by peritoneal CD5+ B lymphocytes,” International Immunology, vol. 2, no. 6, pp. 515–520, 1990. View at Scopus
  61. P. Casali, S. E. Burastero, and M. Nakamura, “Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1+ B-cell subset,” Science, vol. 236, no. 4797, pp. 77–81, 1987. View at Scopus
  62. K. Hayakawa, M. Asano, S. A. Shinton et al., “Positive selection of anti-thy-1 autoreactive B-1 cells and natural serum autoantibody production independent from bone marrow B cell development,” Journal of Experimental Medicine, vol. 197, no. 1, pp. 87–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Berland and H. H. Wortis, “Origins and functions of B-1 cells with notes on the role of CD5,” Annual Review of Immunology, vol. 20, pp. 253–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. N. A. Bos, J. J. Cebra, and F. G. M. Kroese, “B-1 cells and the intestinal microflora,” Current Topics in Microbiology and Immunology, vol. 252, pp. 211–220, 2000. View at Scopus
  65. P. A. Lalor and G. Morahan, “The peritoneal Ly-1 (CD5) B cell repertoire is unique among murine B cell repertoires,” European Journal of Immunology, vol. 20, no. 3, pp. 485–492, 1990. View at Scopus
  66. L. A. Herzenberg and L. A. Herzenberg, “Toward a layered immune system,” Cell, vol. 59, no. 6, pp. 953–954, 1989. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Palinski, S. Hörkkö, E. Miller et al., “Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice: demonstration of epitopes of oxidized low density lipoprotein in human plasma,” Journal of Clinical Investigation, vol. 98, no. 3, pp. 800–814, 1996. View at Scopus
  68. W. Palinski, R. K. Tangirala, E. Miller, S. G. Young, and J. L. Witztum, “Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 10, pp. 1569–1576, 1995. View at Scopus
  69. J. T. Salonen, S. Ylä-Herttuala, R. Yamamoto et al., “Autoantibody against oxidised LDL and progression of carotid atherosclerosis,” The Lancet, vol. 339, no. 8798, pp. 883–887, 1992. View at Scopus
  70. W. Palinski, V. A. Ord, A. S. Plump, J. L. Breslow, D. Steinberg, and J. L. Witztum, “ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis: demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum,” Arteriosclerosis and Thrombosis, vol. 14, no. 4, pp. 605–616, 1994. View at Scopus
  71. P. Friedman, S. Hörkkö, D. Steinberg, J. L. Witztum, and E. A. Dennis, “Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 7010–7020, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Hörkkö, D. A. Bird, E. Miller et al., “Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins,” Journal of Clinical Investigation, vol. 103, no. 1, pp. 117–128, 1999. View at Scopus
  73. C. J. Binder, S. Hörkkö, A. Dewan et al., “Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL,” Nature Medicine, vol. 9, no. 6, pp. 736–743, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Caligiuri, J. Khallou-Laschet, M. Vandaele et al., “Phosphorylcholine-targeting immunization reduces atherosclerosis,” Journal of the American College of Cardiology, vol. 50, no. 6, pp. 540–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Schiopu, B. Frendéus, B. Jansson et al., “Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in Apobec-1-/-/low-density lipoprotein receptor-/- mice,” Journal of the American College of Cardiology, vol. 50, no. 24, pp. 2313–2318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Hulthe, L. Bokemark, and B. Fagerberg, “Antibodies to oxidized LDL in relation to intima-media thickness in carotid and femoral arteries in 58-year-old subjectively clinically healthy men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 1, pp. 101–107, 2001. View at Scopus
  77. J. Karvonen, M. Päivänsalo, Y. A. Kesäniemi, and S. Hörkkö, “Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis,” Circulation, vol. 108, no. 17, pp. 2107–2112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. J. R. Faria-Neto, K. Y. Chyu, X. Li et al., “Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice,” Atherosclerosis, vol. 189, no. 1, pp. 83–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Zhang, W. G. Austen, I. Chiu et al., “Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 11, pp. 3886–3891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Zhao, H. Ogawa, X. Wang et al., “Oxidized low-density lipoprotein and autoimmune antibodies in patients with antiphospholipid syndrome with a history of thrombosis,” American Journal of Clinical Pathology, vol. 116, no. 5, pp. 760–767, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Ehara, M. Ueda, T. Naruko et al., “Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes,” Circulation, vol. 103, no. 15, pp. 1955–1960, 2001. View at Scopus
  82. J. George, Y. Shoenfeld, A. Afek et al., “Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 3, pp. 505–510, 1999. View at Scopus
  83. J. George, D. Harats, B. Gilburd et al., “Immunolocalization of β2-glycoprotein I (apolipoprotein H) to human atherosclerotic plaques: potential implications for lesion progression,” Circulation, vol. 99, no. 17, pp. 2227–2230, 1999. View at Scopus
  84. C. Bergmark, R. Wu, U. De Faire, A. K. Lefvert, and J. Swedenborg, “Patients with early-onset peripheral vascular disease have increased levels of autoantibodies against oxidized LDL,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 4, pp. 441–445, 1995. View at Scopus
  85. C. Monaco, F. Crea, G. Niccoli et al., “Autoantibodies against oxidized low density lipoproteins in patients with stable angina, unstable angina or peripheral vascular disease: pathophysiological implications,” European Heart Journal, vol. 22, no. 17, pp. 1572–1577, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Yla-Herttuala, W. Palinski, S. W. Butler, S. Picard, D. Steinberg, and J. L. Witztum, “Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL,” Arteriosclerosis and Thrombosis, vol. 14, no. 1, pp. 32–40, 1994. View at Scopus
  87. R. Wu, S. Nityanand, L. Berglund, H. Lithell, G. Holm, and A. K. Lefvert, “Antibodies against cardiolipin and oxidatively modified LDL in 50-year- old men predict myocardial infarction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 11, pp. 3159–3163, 1997. View at Scopus
  88. M. Puurunen, M. Mänttäri, V. Manninen et al., “Antibody against oxidized low-density lipoprotein predicting myocardial infarction,” Archives of Internal Medicine, vol. 154, no. 22, pp. 2605–2609, 1994. View at Publisher · View at Google Scholar · View at Scopus
  89. J. C. Fang, S. Kinlay, D. Behrendt et al., “Circulating autoantibodies to oxidized LDL correlate with impaired coronary endothelial function after cardiac transplantation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 12, pp. 2044–2048, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. B. P. Swets, D. A. J. Brouwer, and J. W. Cohen Tervaert, “Patients with systemic vasculitis have increased levels of autoantibodies against oxidized LDL,” Clinical and Experimental Immunology, vol. 124, no. 1, pp. 163–167, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Wu, Y. Shoenfeld, Y. Sherer et al., “Anti-idiotypes to oxidized LDL antibodies in intravenous immunoglobulin preparations—possible immunomodulation of atherosclerosis,” Autoimmunity, vol. 36, no. 2, pp. 91–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Wu, E. Svenungsson, I. Gunnarsson et al., “Antibodies to adult human endothelial cells cross-react with oxidized low-density lipoprotein and β2-glycoprotein I (β2-GPI) in systemic lupus erythematosus,” Clinical and Experimental Immunology, vol. 115, no. 3, pp. 561–566, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. G. N. Fredrikson, B. Hedblad, G. Berglund et al., “Association between IgM against an aldehyde-modified peptide in apolipoprotein B-100 and progression of carotid disease,” Stroke, vol. 38, no. 5, pp. 1495–1500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Hulthe, J. Wikstrand, A. Lidell, I. Wendelhag, G. K. Hansson, and O. Wiklund, “Antibody titers against oxidized LDL are not elevated in patients with familial hypercholesterolemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 18, no. 8, pp. 1203–1211, 1998. View at Scopus
  95. U. P. Steinbrecher, S. Parthasarathy, and D. S. Leake, “Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 12 I, pp. 3883–3887, 1984. View at Scopus
  96. G. Virella, I. Virella, R. B. Leman, M. B. Pryor, and M. F. Lopes-Virella, “Anti-oxidized low-density lipoprotein antibodies in patients with coronary heart disease and normal healthy volunteers,” International Journal of Clinical & Laboratory Research, vol. 23, no. 1-4, pp. 95–101, 1993. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Ameli, A. Hultgårdh-Nilsson, J. Regnström et al., “Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 8, pp. 1074–1079, 1996. View at Scopus
  98. W. Palinski, E. Miller, and J. L. Witztum, “Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 821–825, 1995. View at Publisher · View at Google Scholar · View at Scopus
  99. G. Caligiuri, A. Nicoletti, B. Poirierand, and G. K. Hansson, “Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice,” Journal of Clinical Investigation, vol. 109, no. 6, pp. 745–753, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. X. Zhou, G. Caligiuri, A. Hamsten, A. K. Lefvert, and G. K. Hansson, “LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 1, pp. 108–114, 2001. View at Scopus
  101. A. Schiopu, J. Bengtsson, I. Söderberg et al., “Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis,” Circulation, vol. 110, no. 14, pp. 2047–2052, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. D. Nicolo, B. I. Goldman, and M. Monestier, “Reduction of atherosclerosis in low-density lipoprotein receptor-deficient mice by passive administration of antiphospholipid antibody,” Arthritis and Rheumatism, vol. 48, no. 10, pp. 2974–2978, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Shoenfeld, R. Wu, L. D. Dearing, and E. Matsuura, “Are anti-oxidized low-density lipoprotein antibodies pathogenic or protective?” Circulation, vol. 110, no. 17, pp. 2552–2558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Shoji, Y. Nishizawa, M. Fukumoto et al., “Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and anti-oxLDL antibody levels in healthy subjects,” Atherosclerosis, vol. 148, no. 1, pp. 171–177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Fukumoto, T. Shoji, M. Emoto, T. Kawagishi, Y. Okuno, and Y. Nishizawa, “Antibodies against oxidized LDL and carotid artery intima-media thickness in a healthy population,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 3, pp. 703–707, 2000. View at Scopus
  106. R. Klingenberg, M. Lebens, A. Hermansson et al., “Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 5, pp. 946–952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Maron, G. Sukhova, A. M. Faria et al., “Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice,” Circulation, vol. 106, no. 13, pp. 1708–1715, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Nilsson, G. N. Fredrikson, H. Björkbacka, K. Y. Chyu, and P. K. Shah, “Vaccines modulating lipoprotein autoimmunity as a possible future therapy for cardiovascular disease,” Journal of Internal Medicine, vol. 266, no. 3, pp. 221–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. G. H. M. Van Puijvelde, A. D. Hauer, P. De Vos et al., “Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis,” Circulation, vol. 114, no. 18, pp. 1968–1976, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. G. H. M. Van Puijvelde, T. Van Es, E. J. A. Van Wanrooij et al., “Induction of oral tolerance to HSP60 or an HSP60-peptide activates t cell regulation and reduces atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2677–2683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. Z. Mallat and A. Tedgui, “Immunomodulation to combat atherosclerosis: the potential role of immune regulatory cells,” Expert Opinion on Biological Therapy, vol. 4, no. 9, pp. 1387–1393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. G. N. Fredrikson, B. Hedblad, G. Berglund et al., “Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 5, pp. 872–878, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. G. N. Fredrikson, M. W. Lindholm, I. Ljungcrantz, I. Söderberg, P. K. Shah, and J. Nilsson, “Autoimmune responses against the apo B-100 LDL receptor-binding site protect against arterial accumulation of lipids in LDL receptor deficient mice,” Autoimmunity, vol. 40, no. 2, pp. 122–130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Hörkkö, C. J. Binder, P. X. Shaw et al., “Immunological responses to oxidized LDL,” Free Radical Biology and Medicine, vol. 28, no. 12, pp. 1771–1779, 2000. View at Publisher · View at Google Scholar · View at Scopus
  115. P. X. Shaw, S. Hörkkö, S. Tsimikas et al., “Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 8, pp. 1333–1339, 2001. View at Scopus
  116. G. Virella, M. F. Lopes-Virella, C. J. Binder, and J. L. Witztum, “Humoral immunity and atherosclerosis,” Nature Medicine, vol. 9, no. 3, pp. 243–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. G. N. Fredrikson, I. Söderberg, M. Lindholm et al., “Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 5, pp. 879–884, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. G. N. Fredrikson, A. Schiopu, G. Berglund, R. Alm, P. K. Shah, and J. Nilsson, “Autoantibody against the amino acid sequence 661-680 in apo B-100 is associated with decreased carotid stenosis and cardiovascular events,” Atherosclerosis, vol. 194, no. 2, pp. e188–e192, 2007. View at Publisher · View at Google Scholar · View at Scopus