About this Journal Submit a Manuscript Table of Contents
Cholesterol
Volume 2012 (2012), Article ID 610741, 8 pages
http://dx.doi.org/10.1155/2012/610741
Research Article

In Vivo Inflammation Does Not Impair ABCA1-Mediated Cholesterol Efflux Capacity of HDL

1Department of Vascular Medicine, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
2Department of Experimental Vascular Medicine, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
3Department of Gastroenterology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands

Received 26 October 2011; Revised 13 January 2012; Accepted 27 January 2012

Academic Editor: Andrei C. Sposito

Copyright © 2012 Remco Franssen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Gordon, W. P. Castelli, and M. C. Hjortland, “High density lipoprotein as a protective factor against coronary heart disease. The Framingham study,” American Journal of Medicine, vol. 62, no. 5, pp. 707–714, 1977. View at Scopus
  2. W. B. Kannel, “High-density lipoproteins: epidemiologic profile and risks of coronary artery disease,” American Journal of Cardiology, vol. 52, no. 4, pp. 9B–12B, 1983. View at Scopus
  3. P. W. F. Wilson, R. D. Abbott, and W. P. Castelli, “High density lipoprotein cholesterol and mortality. The Framingham heart study,” Arteriosclerosis, vol. 8, no. 6, pp. 737–741, 1988. View at Scopus
  4. S. I. Van Leuven, E. S. Stroes, and J. J. P. Kastelein, “High-density lipoprotein: a fall from grace?” Annals of Medicine, vol. 40, no. 8, pp. 584–593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Kontush and M. J. Chapman, “Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis,” Pharmacological Reviews, vol. 58, no. 3, pp. 342–374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Mineo, H. Deguchi, J. H. Griffin, and P. W. Shaul, “Endothelial and antithrombotic actions of HDL,” Circulation Research, vol. 98, no. 11, pp. 1352–1364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Birjmohun, S. I. Van Leuven, J. H. M. Levels et al., “High-density lipoprotein attenuates inflammation and coagulation response on endotoxin challenge in humans,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 1153–1158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Tall, “Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins,” Journal of Internal Medicine, vol. 263, no. 3, pp. 256–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Yvan-Charvet, N. Wang, and A. R. Tall, “Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 2, pp. 139–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. F. Oram and R. M. Lawn, “ABCA1: the gatekeeper for eliminating excess tissue cholesterol,” Journal of Lipid Research, vol. 42, no. 8, pp. 1173–1179, 2001. View at Scopus
  11. Y. L. Marcel, M. Ouimet, and M. D. Wang, “Regulation of cholesterol efflux from macrophages,” Current Opinion in Lipidology, vol. 19, no. 5, pp. 455–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Libby, P. M. Ridker, and A. Maseri, “Inflammation and atherosclerosis,” Circulation, vol. 105, no. 9, pp. 1135–1143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Ross, “Atherosclerosis—an inflammatory disease,” New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Libby, P. M. Ridker, and G. K. Hansson, “Progress and challenges in translating the biology of atherosclerosis,” Nature, vol. 473, no. 7347, pp. 317–325, 2011. View at Publisher · View at Google Scholar
  15. W. Khovidhunkit, M. S. Kim, R. A. Memon et al., “Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host,” Journal of Lipid Research, vol. 45, no. 7, pp. 1169–1196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. I. Van Leuven, R. Hezemans, J. H. Levels et al., “Enhanced atherogenesis and altered high density lipoprotein in patients with Crohn's disease,” Journal of Lipid Research, vol. 48, no. 12, pp. 2640–2646, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. D. Dorn and R. S. Sandler, “Inflammatory bowel disease is not a risk factor for cardiovascular disease mortality: results from a systematic review and meta-analysis,” American Journal of Gastroenterology, vol. 102, no. 3, pp. 662–667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Hazen, R. Zhang, Z. Shen et al., “Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes pathways for monocyte-mediated protein nitration and lipid peroxidation in vivo,” Circulation Research, vol. 85, no. 10, pp. 950–958, 1999. View at Scopus
  19. B. Shao, C. Bergt, X. Fu et al., “Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport,” Journal of Biological Chemistry, vol. 280, no. 7, pp. 5983–5993, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Zheng, B. Nukuna, M. L. Brennan et al., “Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and function impairment in subjects with cardiovascular disease,” Journal of Clinical Investigation, vol. 114, no. 4, pp. 529–541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Shao and J. W. Heinecke, “Impact of HDL oxidation by the myeloperoxidase system on sterol efflux by the ABCA1 pathway,” Journal of Proteomics, vol. 74, no. 11, pp. 2289–2299, 2011. View at Publisher · View at Google Scholar
  22. B. Shao, S. Pennathur, and J. W. Heinecke, “Myeloperoxidase targets apolipoprotein A-I, the major HDL protein, for site-specific oxidation in human atherosclerotic lesions,” The Journal of Biological Chemistry, vol. 287, no. 9, pp. 6375–6386, 2012.
  23. S. Pennathur, C. Bergt, B. Shao et al., “Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 42977–42983, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Shao, M. N. Oda, C. Bergt et al., “Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I,” Journal of Biological Chemistry, vol. 281, no. 14, pp. 9001–9004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Matsuura, N. Wang, W. Chen, X. C. Jiang, and A. R. Tall, “HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1435–1442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Denis, R. Bissonnette, B. Haidar, L. Krimbou, M. Bouvier, and J. Genest, “Expression, regulation, and activity of ABCA1 in human cell lines,” Molecular Genetics and Metabolism, vol. 78, no. 4, pp. 265–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. H. J. Van Leeuwen, E. C. J. M. Heezius, G. M. Dallinga, J. A. G. Van Strijp, J. Verhoef, and K. P. M. Van Kessel, “Lipoprotein metabolism in patients with severe sepsis,” Critical Care Medicine, vol. 31, no. 5, pp. 1359–1366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. D. R. Van Der Westhuyzen, L. Cai, M. C. De Beer, and F. C. De Beer, “Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I,” Journal of Biological Chemistry, vol. 280, no. 43, pp. 35890–35895, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. De La Llera-Moya, D. Drazul-Schrader, B. F. Asztalos, M. Cuchel, D. J. Rader, and G. H. Rothblat, “The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 796–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. C. McGillicuddy, M. L. De La Moya, C. C. Hinkle et al., “Inflammation impairs reverse cholesterol transport in vivo,” Circulation, vol. 119, no. 8, pp. 1135–1145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. F. Lowry, “Human endotoxemia: a model for mechanistic insight and therapeutic targeting,” Shock, vol. 24, no. 1, pp. 94–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Anel and A. Kumar, “Human endotoxemia and human sepsis: limits to the model,” Critical Care, vol. 9, no. 2, pp. 151–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Berrougui, M. Isabelle, M. Cloutier, G. Grenier, and A. Khalil, “Age-related impairment of HDL-mediated cholesterol efflux,” Journal of Lipid Research, vol. 48, no. 2, pp. 328–336, 2007. View at Publisher · View at Google Scholar · View at Scopus