About this Journal Submit a Manuscript Table of Contents
Volume 2013 (2013), Article ID 314170, 7 pages
Clinical Study

Short-Term Effect of Pitavastatin Treatment on Glucose and Lipid Metabolism and Oxidative Stress in Fasting and Postprandial State Using a Test Meal in Japanese Men

1Kakuda Clinic, Takamatsu Na15-1, Kahoku, Ishikawa 929-1215, Japan
2Department of General Medicine, Kanazawa Medical University, 1-1 Daigaku Uchinada, Kahoku, Ishikawa Prefecture 920-0293, Japan
3Kanazawa Medical University, 1-1 Daigaku Uchinada, Kahoku, Ishikawa Prefecture 920-0293, Japan

Received 3 September 2013; Revised 10 November 2013; Accepted 12 November 2013

Academic Editor: Jeffrey Cohn

Copyright © 2013 Hirokazu Kakuda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Introduction. The objective of this study was to clarify how pitavastatin affects glucose and lipid metabolism, renal function, and oxidative stress. Methods. Ten Japanese men (average age of 33.9 years) were orally administered 2 mg of pitavastatin for 4 weeks. Postprandial glucose, lipoprotein metabolism, and oxidative stress markers were evaluated at 0 and 4 weeks of pitavastatin treatment (2 mg once daily) with a test meal consisting of total calories: 460 kcal, carbohydrates: 56.5 g (226 kcal), protein: 18 g (72 kcal), lipids: 18 g (162 kcal), and NaCl: 1.6 g. Metabolic parameters were measured at 0, 60, and 120 minutes after test meal ingestion. Results. After administration of pitavastatin, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B, arachidonic acid, insulin, and adjusted urinary excretion of uric acid decreased, whereas creatinine clearance ( ) and uric acid clearance ( ) increased. And postprandial versus fasting urine 8-hydroxydeoxyguanosine remained unchanged, while postprandial versus fasting isoprostane decreased after pitavastatin treatment. Next, we compared postprandial glucose and lipid metabolism after test meal ingestion before and after pitavastatin administration. Incremental areas under the curve significantly decreased for triglycerides ( ) and remnant-like particle cholesterol ( ), while those for apolipoprotein E (apoE), glucose, insulin, and high-sensitivity C-reactive protein remained unchanged. Conclusion. Pitavastatin improves postprandial oxidative stress along with hyperlipidemia.