About this Journal Submit a Manuscript Table of Contents
Cholesterol
Volume 2013 (2013), Article ID 792090, 10 pages
http://dx.doi.org/10.1155/2013/792090
Review Article

Functionally Defective High-Density Lipoprotein and Paraoxonase: A Couple for Endothelial Dysfunction in Atherosclerosis

1Laboratory of Atatürk Hospital, 07040 Antalya, Turkey
2Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, 07100 Antalya, Turkey
3Antalya Eğitim ve Araştırma Hastanesi Merkez Laboratuvarı Soğuksu, 07100 Antalya, Turkey

Received 29 June 2013; Revised 8 August 2013; Accepted 12 August 2013

Academic Editor: Jeffrey Cohn

Copyright © 2013 Esin Eren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Eren, N. Yilmaz, and O. Aydin, “High density lipoprotein and it's dysfunction,” The Open Biochemistry Journal, vol. 6, pp. 78–93, 2012.
  2. S. M. Gordon, S. Hofmann, D. S. Askew, and W. S. Davidson, “High density lipoprotein: it's not just about lipid transport anymore,” Trends in Endocrinology and Metabolism, vol. 22, no. 1, pp. 9–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Annema and U. J. F. Tietge, “Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport,” Current Atherosclerosis Reports, vol. 13, no. 3, pp. 257–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. M. deGoma, R. L. deGoma, and D. J. Rader, “Beyond high-density lipoprotein cholesterol levels. Evaluating high-density lipoprotein function as influenced by novel therapeutic approaches,” Journal of the American College of Cardiology, vol. 51, no. 23, pp. 2199–2211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Movva and D. J. Rader, “Laboratory assessment of HDL heterogeneity and function,” Clinical Chemistry, vol. 54, no. 5, pp. 788–800, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Mineo and P. W. Shaul, “PON-dering differences in HDL function in coronary artery disease,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2545–2548, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Kon, T. A. Ikizler, and S. Fazio, “Importance of high-density lipoprotein quality: evidence from chronic kidney disease,” Current Opinion in Nephrology and Hypertension. In press.
  8. T. A. Christiansen-Weber, J. R. Voland, Y. Wu et al., “Functional loss of ABCA1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency,” American Journal of Pathology, vol. 157, no. 3, pp. 1017–1029, 2000. View at Scopus
  9. A. S. Shah, L. Tan, J. Lu Long, and W. S. Davidson, “The proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond,” Journal of Lipid Research. In press.
  10. S. Campbell and J. Genest, “HDL: clinical equipoise and vascular endothelial function,” Expert Review of Cardiovascular Therapy, vol. 11, no. 3, pp. 343–353, 2013.
  11. M. Riwanto, L. Rohrer, B. Roschitzki, et al., “Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling,” Circulation, vol. 127, no. 8, pp. 891–904, 2013.
  12. C. Mineo, H. Deguchi, J. H. Griffin, and P. W. Shaul, “Endothelial and antithrombotic actions of HDL,” Circulation Research, vol. 98, no. 11, pp. 1352–1364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. J. Barter, S. Nicholls, K.-A. Rye, G. M. Anantharamaiah, M. Navab, and A. M. Fogelman, “Antiinflammatory properties of HDL,” Circulation Research, vol. 95, no. 8, pp. 764–772, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Li and J. L. Mehta, “3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect against oxidized low-density lipoprotein-induced endothelial dysfunction,” Endothelium, vol. 10, no. 1, pp. 17–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. Degoma and D. J. Rader, “Novel HDL-directed pharmacotherapeutic strategies,” Nature Reviews Cardiology, vol. 8, no. 5, pp. 266–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Yilmaz, “Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases,” Archives of Medical Science, vol. 8, no. 1, pp. 138–153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Mackness and M. Mackness, “The antioxidant properties of high-density lipoproteins in atherosclerosis,” Panminerva Medica, vol. 54, no. 2, pp. 83–90, 2012.
  18. B. Mackness, R. Quarck, W. Verreth, M. Mackness, and P. Holvoet, “Human paraoxonase-1 overexpression inhibits atherosclerosis in a mouse model of metabolic syndrome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 7, pp. 1545–1550, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Aviram, “Introduction to paraoxonases,” Journal of Lipids, vol. 2012, Article ID 687273, 2 pages, 2012. View at Publisher · View at Google Scholar
  20. D. Litvinov and H. Mahini M Garelnabi, “Antioxidant and anti-inflammatory role of paraoxonase 1: implication in arteriosclerosis diseases,” North American Journal of Medical Sciences, vol. 4, no. 11, pp. 523–532, 2012.
  21. A. S. Farid and Y. Horii, “Modulation of paraoxonases during infectious diseases and its potential impact on atherosclerosis,” Lipids in Health and Disease, vol. 11, p. 92, 2012.
  22. K. Borowczyk, J. Tisończyk, and H. Jakubowski, “Metabolism and neurotoxicity of homocysteine thiolactone in mice: protective role of bleomycin hydrolase,” Amino Acids, vol. 43, no. 3, pp. 1339–1348, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Riedmaier, K. Klein, S. Winter, et al., “Paraoxonase (PON1 and PON3) polymorphisms: impact on liver expression and atorvastatin-lactone hydrolysis,” Frontiers in Pharmacology, vol. 2, p. 41, 2011.
  24. M. I. Mendonça, R. P. Dos Reis, A. I. Freitas et al., “Human paraoxonase gene polymorphisms and coronary artery disease risk,” Revista Portuguesa de Cardiologia, vol. 27, no. 12, pp. 1539–1555, 2008. View at Scopus
  25. Z.-G. She, H.-Z. Chen, Y. Yan, H. Li, and D.-P. Liu, “The human paraoxonase gene cluster as a target in the treatment of atherosclerosis,” Antioxidants and Redox Signaling, vol. 16, no. 6, pp. 597–632, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. L. G. Costa, A. Vitalone, T. B. Cole, and C. E. Furlong, “Modulation of paraoxonase (PON1) activity,” Biochemical Pharmacology, vol. 69, no. 4, pp. 541–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. E. E. Quillen, D. L. Rainwater, T. D. Dyer, et al., “Novel associations of nonstructural Loci with paraoxonase activity,” Journal of Lipids, vol. 2012, Article ID 189681, 7 pages, 2012. View at Publisher · View at Google Scholar
  28. L. G. Costa, G. Giordano, and C. E. Furlong, “Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on,” Biochemical Pharmacology, vol. 81, no. 3, pp. 337–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Debord, J.-C. Bollinger, L. Merle, and T. Dantoine, “Inhibition of human serum arylesterase by metal chlorides,” Journal of Inorganic Biochemistry, vol. 94, no. 1-2, pp. 1–4, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Bilen, S. Beyaztaş, O. Arslan, and O. Ö. Güler, “Investigation of heavy metal effects on immobilized paraoxanase by glutaraldehyde,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 28, no. 3, pp. 440–446, 2013.
  31. T. Sawamura, A. Kakino, and Y. Fujita, “LOX-1: a multiligand receptor at the crossroads of response to danger signals,” Current Opinions in Lipidology, vol. 23, no. 5, pp. 439–445, 2012.
  32. B. Mackness, W. Turkie, and M. Mackness, “Paraoxonase-1 (PON1) promoter region polymorphisms, serum PON1 status and coronary heart disease,” Archives of Medical Science, vol. 9, no. 1, pp. 8–13, 2013.
  33. N. Yilmaz, E. Eren, and O. Erel, “Activity paraoxonase and arylesterase and its relationship to antioxidat profiles in young basketball players and sedentary controls,” Medicina Sportiva, vol. 11, pp. 20–26, 2007.
  34. B. Richter, A. Niessner, M. Penka et al., “Endurance training reduces circulating asymmetric dimethylarginine and myeloperoxidase levels in persons at risk of coronary events,” Thrombosis and Haemostasis, vol. 94, no. 6, pp. 1306–1311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Loued, H. Berrougui, P. Componova, et al., “Extra-virgin olive oil consumption reduces the age-related decrease in HDL and paraoxonase 1 anti-inflammatory activities,” British Journal of Nutrition, vol. 19, pp. 1–13, 2013.
  36. M. Rosenblat, N. Volkova, R. Coleman, Y. Almagor, and M. Aviram, “Antiatherogenicity of extra virgin olive oil and its enrichment with green tea polyphenols in the atherosclerotic apolipoprotein-E-deficient mice: enhanced macrophage cholesterol efflux,” Journal of Nutritional Biochemistry, vol. 19, no. 8, pp. 514–523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Parsaeyan, H. Mozaffari-Khosravi, and M. R. Mozayan, “Effect of pomegranate juice on paraoxonase enzyme activity in patients with type 2 diabetes,” Journal of Diabetes and Metabolic Disorders, vol. 11, no. 1, p. 11, 2012.
  38. A. Balbir-Gurman, B. Fuhrman, Y. Braun-Moscovici, D. Markovits, and M. Aviram, “Consumption of pomegranate decreases serum oxidative stress and reduces disease activity in patients with active rheumatoid arthritis: a pilot study,” Israel Medical Association Journal, vol. 13, no. 8, pp. 474–479, 2011. View at Scopus
  39. T. D. Heden, Y. Liu, L. Y. Sims, et al., “Meal frequency differentially alters postprandial triacylglycerol and insulin concentrations in obese women,” Obesity, vol. 21, no. 1, pp. 123–129, 2013.
  40. E. Thomàs-Moyà, A. Nadal-Casellas, M. Gianotti, I. Lladó, and A. M. Proenza, “Time-dependent modulation of rat serum paraoxonase 1 activity by fasting,” Pflugers Archiv European Journal of Physiology, vol. 453, no. 6, pp. 831–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Thomàs-Moyà, M. Gianotti, I. Lladó, and A. M. Proenza, “Effects of caloric restriction and gender on rat serum paraoxonase 1 activity,” Journal of Nutritional Biochemistry, vol. 17, no. 3, pp. 197–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Thomàs-Moyà, M. Gianotti, A. M. Proenza, and I. Lladó, “Paraoxonase 1 response to a high-fat diet: gender differences in the factors involved,” Molecular Medicine, vol. 13, no. 3-4, pp. 203–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. K. B. Rubinow, T. Vaisar, C. Tang, et al., “Testosterone replacement in hypogonadal men alters the HDL proteome but not HDL cholesterol efflux capacity,” Journal of Lipid Research, vol. 53, no. 7, pp. 1376–1383, 2012.
  44. T. L. Chee, K. Rowley, A. J. Jenkins et al., “Paraoxonase activity in Greek migrants and Anglo-Celtic persons in the Melbourne Collaborative Cohort Study: relationship to dietary markers,” European Journal of Nutrition, vol. 44, no. 4, pp. 223–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Ustundag, I. H. Bahcecioglu, K. Sahin et al., “Protective effect of soy isoflavones and activity levels of plasma paraoxonase and arylesterase in the experimental nonalcoholic steatohepatitis model,” Digestive Diseases and Sciences, vol. 52, no. 8, pp. 2006–2014, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Besler, T. F. Lüscher, and U. Landmesser, “Molecular mechanisms of vascular effects of High-density lipoprotein: alterations in cardiovascular disease,” EMBO Molecular Medicine, vol. 4, no. 4, pp. 251–268, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Besler, K. Heinrich, L. Rohrer et al., “Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2693–2708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Calabresi, M. Gomaraschi, and G. Franceschini, “Endothelial protection by high-density lipoproteins: from bench to bedside,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 10, pp. 1724–1731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Martínez-González and L. Badimon, “Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks,” Current Pharmaceutical Design, vol. 13, no. 22, pp. 2215–2227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Julve, G. Llaverias, F. Blanco-Vaca, and J. C. Escolà-Gil, “Seeking novel targets for improving in vivo macrophage-specific reverse cholesterol transport: translating basic science into new therapies for the prevention and treatment of atherosclerosis,” Current Vascular Pharmacology, vol. 9, no. 2, pp. 220–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Assmann and A. M. Gotto Jr., “HDL cholesterol and protective factors in atherosclerosis,” Circulation, vol. 109, no. 23, pp. III8–III14, 2004. View at Scopus
  52. B. Shao, “Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL,” Biochimica et Biophysica Acta, vol. 1821, no. 3, pp. 490–501, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Liu, L. Ji, Y. Wang, and L. Zheng, “Cyclooxygenase-2 expression, prostacyclin production and endothelial protection of high-density lipoprotein,” Cardiovascular and Hematological Disorders Drug Targets, vol. 12, no. 2, pp. 98–105, 2012.
  54. X. Tong, H. Peng, D. Liu, et al., “High-density lipoprotein of patients with Type 2 Diabetes Mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate,” Cardiovascular Diabetology, vol. 12, no. 1, p. 27, 2013.
  55. D. Liu, L. Ji, X. Tong et al., “Human apolipoprotein A-I induces cyclooxygenase-2 expression and prostaglandin I-2 release in endothelial cells through ATP-binding cassette transporter a1,” American Journal of Physiology, vol. 301, no. 3, pp. C739–C748, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. B. A. Wilkerson, G. D. Grass, S. B. Wing, et al., “Sphingosine 1-phosphate (S1P) carrier-dependent regulation of endothelial barrier: high density lipoprotein (HDL)-S1P prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1,” Journal of Biological Chemistry, vol. 287, no. 53, pp. 44645–44653, 2012.
  57. C. X. Huang, Y. L. Zhang, J. F. Wang, et al., “MCP-1 impacts reverse cholesterol transport by repressing ABCA1, ABCG1 and SR-BI throughPI3K/Akt post-translational regulation in HepG2 cells,” Journal of Lipid Research, vol. 54, no. 5, pp. 1231–1240, 2013. View at Publisher · View at Google Scholar
  58. K. Yokoi, H. Adachi, Y. Hirai, et al., “Plasma endothelin-1 level is a predictor of 10-year mortality in a general population: the Tanushimaru study,” Circulation Journal, vol. 76, no. 12, pp. 2779–2784, 2012.
  59. B. J. Wu, K. Chen, S. Shrestha, K. L. Ong, et al., “High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3β-hydroxysteroid-Δ24 reductase expression and inducing heme oxygenase-1,” Circulation Research, vol. 112, no. 2, pp. 278–288, 2013.
  60. T. Bayrak, P. Dursun, A. Bayrak, et al., “Paraoxonase lactonase activity (PON-HTLase), asymmetric dimethylarginine (ADMA) and platelet activating factor-acetylhydrolase (PAF-AH) activity in non-obese women with PCOS,” Gynecological Endocrinology, vol. 28, no. 11, pp. 874–878, 2012.
  61. J. Watanabe, G. K. Marathe, P. O. Neilsen et al., “Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles,” Journal of Biological Chemistry, vol. 278, no. 35, pp. 33161–33168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kotosa, S. Shimada, M. Kanda, et al., “Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability,” Lipids, vol. 48, no. 6, pp. 569–578, 2013. View at Publisher · View at Google Scholar
  63. G. D. Norata and A. L. Catapano, “Molecular mechanisms responsible for the antiinflammatory and protective effect of HDL on the endothelium,” Vascular Health and Risk Management, vol. 1, no. 2, pp. 119–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Mineo and P. W. Shaul, “Novel biological functions of high-density lipoprotein cholesterol,” Circulation Research, vol. 111, no. 8, pp. 1079–1090, 2012.
  65. M. Sugano, K. Tsuchida, and N. Makino, “High-density lipoproteins protect endothelial cells from tumor necrosis factor-α-induced apoptosis,” Biochemical and Biophysical Research Communications, vol. 272, no. 3, pp. 872–876, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Morel, M. A. Frias, C. Rosker, R. W. James, S. Rohr, and B. R. Kwak, “The natural cardioprotective particle HDL modulates connexin43 gap junction channels,” Cardiovascular Research, vol. 93, no. 1, pp. 41–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. B. L. Trigatti, R. Brunet, and M. How, “Modulators of protein kinase C affect SR-BI-dependent HDL lipid uptake in transfected HepG2 cells,” Cholesterol, vol. 2011, Article ID 687939, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Mudau, A. Genis, A. Lochner, and H. Strijdom, “Endothelial dysfunction: the early predictor of atherosclerosis,” Cardiovascular Journal of Africa, vol. 23, no. 4, pp. 222–231, 2012.
  69. P. O. Bonetti, L. O. Lerman, and A. Lerman, “Endothelial dysfunction: a marker of atherosclerotic risk,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 2, pp. 168–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Yang and J. Loscalzo, “Regulation of tissue factor expression in human microvascular endothelial cells by nitric oxide,” Circulation, vol. 101, no. 18, pp. 2144–2148, 2000. View at Scopus
  71. M. Gomaraschi, D. Baldassarre, M. Amato et al., “Normal vascular function despite low levels of high-density lipoprotein cholesterol in carriers of the apolipoprotein A-IMilano mutant,” Circulation, vol. 116, no. 19, pp. 2165–2172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. C. S. Stancu, L. Toma, and A. V. Sima, “Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis,” Cell Tissue Research, vol. 349, no. 2, pp. 433–446, 2012.
  73. T. Speer, L. Rohrer, P. Blyszczuk, et al., “Abnormal high-density lipoprotein induces endothelial dysfunction via activation of toll-like receptor-2,” Immunity, vol. 38, no. 4, pp. 754–768, 2013. View at Publisher · View at Google Scholar
  74. G. Marsche, M. D. Saemann, A. Heinemann, and M. Holzer, “Inflammation alters HDL composition and function: implications for HDL-raising therapies,” Pharmacology & Therapeutics, vol. 137, pp. 341–351, 2013.
  75. C. Gouédard, N. Koum-Besson, R. Barouki, and Y. Morel, “Opposite regulation of the human paraoxonase-1 gene PON-1 by fenofibrate and statins,” Molecular Pharmacology, vol. 63, no. 4, pp. 945–956, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. M. J. A. Amar, W. D'Souza, S. Turner et al., “5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 334, no. 2, pp. 634–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Saddar, C. Mineo, and P. W. Shaul, “Signaling by the high-affinity HDL receptor scavenger receptor B type I,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 2, pp. 144–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Yoshimoto, Y. Fujita, A. Kakino, S. Iwamoto, T. Takaya, and T. Sawamura, “The discovery of LOX-1, its ligands and clinical significance,” Cardiovascular Drugs and Therapy, vol. 25, no. 5, pp. 379–391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Mineo and P. W. Shaul, “Role of high-density lipoprotein and scavenger receptor B type I in the promotion of endothelial repair,” Trends in Cardiovascular Medicine, vol. 17, no. 5, pp. 156–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Matsuo, A. Oberbach, H. Till, et al., “Impaired HDL function in obese adolescents: impact of lifestyle intervention and bariatric surgery,” Obesity, vol. 26, 2013. View at Publisher · View at Google Scholar