About this Journal Submit a Manuscript Table of Contents
Cholesterol
Volume 2013 (2013), Article ID 891403, 18 pages
http://dx.doi.org/10.1155/2013/891403
Review Article

HDL, Atherosclerosis, and Emerging Therapies

1McGill University, Montreal, QC, Canada H3A 1A1
2Faculty of Medicine, Center for Innovative Medicine, McGill University Health Center, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1

Received 27 February 2013; Revised 22 April 2013; Accepted 30 April 2013

Academic Editor: Francisco Blanco-Vaca

Copyright © 2013 Anouar Hafiane and Jacques Genest. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Rader and E. M. deGoma, “Approach to the patient with extremely low HDL-cholesterol,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 10, pp. 3399–3407, 2012.
  2. D. J. Rader and A. R. Tall, “The not-so-simple HDL story: is it time to revise the HDL cholesterol hypothesis?” Nature Medicine, vol. 18, no. 9, pp. 1344–1346, 2012.
  3. C. Baigent, L. Blackwell, J. Emberson, et al., “Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials,” The Lancet, vol. 376, no. 9753, pp. 1670–1681, 2010.
  4. W. E. Boden, J. L. Probstfield, T. Anderson, et al., “Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy,” New England Journal of Medicine, vol. 365, no. 24, pp. 2255–2267, 2011.
  5. R. S. Rosenson and A. M. Gotto Jr., “When clinical trials fail to address treatment gaps: the failure of niacin-laropiprant to reduce cardiovascular events,” Current Atherosclerosis Reports, vol. 15, no. 6, article 332, 2013. View at Publisher · View at Google Scholar
  6. C. Besler, K. Heinrich, L. Rohrer et al., “Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2693–2708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Rosenson, H. B. Brewer Jr., M. J. Chapman et al., “HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events,” Clinical Chemistry, vol. 57, no. 3, pp. 392–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. E. J. Niesor, “Different effects of compounds decreasing cholesteryl ester transfer protein activity on lipoprotein metabolism,” Current Opinion in Lipidology, vol. 22, no. 4, pp. 288–295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. O. F. Delalla, H. A. Elliot, and J. W. Gofman, “Ultracentrifugal studies of high density serum lipoproteins in clinically healthy adults,” The American Journal of Physiology, vol. 179, no. 2, pp. 333–337, 1954. View at Scopus
  10. J. C. Fruchart and J. M. Bard, “Lipoprotein particle measurement: an alternative approach to classification of lipid disorders,” Current Opinion in Lipidology, vol. 2, no. 6, pp. 362–366, 1991. View at Scopus
  11. L. Camont, M. J. Chapman, and A. Kontush, “Biological activities of HDL subpopulations and their relevance to cardiovascular disease,” Trends in Molecular Medicine, vol. 17, no. 10, pp. 594–603, 2011. View at Publisher · View at Google Scholar
  12. J. W. Heinecke, “The HDL proteome: a marker—and perhaps mediator—of coronary artery disease,” Journal of Lipid Research, vol. 50, supplement, pp. S167–S171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. W. S. Davidson, R. A. G. D. Silva, S. Chantepie, W. R. Lagor, M. J. Chapman, and A. Kontush, “Proteomic analysis of defined hdl subpopulations reveals particle-specific protein clusters: relevance to antioxidative function,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 6, pp. 870–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. R. Superko, L. Pendyala, P. T. Williams, K. M. Momary, S. B. King III, and B. C. Garrett, “High-density lipoprotein subclasses and their relationship to cardiovascular disease,” Journal of Clinical Lipidology, vol. 6, no. 6, pp. 496–523, 2012.
  15. A. V. Khera and D. J. Rader, “Future therapeutic directions in reverse cholesterol transport,” Current Atherosclerosis Reports, vol. 12, no. 1, pp. 73–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. Ansell, M. Navab, S. Hama et al., “Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment,” Circulation, vol. 108, no. 22, pp. 2751–2756, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Di Angelantonio, N. Sarwar, P. Perry et al., “Major lipids, apolipoproteins, and risk of vascular disease,” Journal of the American Medical Association, vol. 302, no. 18, pp. 1993–2000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. H. Mackey, P. Greenland, D. C. Goff Jr., D. Lloyd-Jones, C. T. Sibley, and S. Mora, “High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis),” Journal of the American College of Cardiology, vol. 60, no. 6, pp. 508–516, 2012.
  19. H. N. Ginsberg, M. B. Elam, L. C. Lovato, et al., “Effects of combination lipid therapy in type 2 diabetes mellitus,” New England Journal of Medicine, vol. 362, no. 17, pp. 1563–1574, 2010.
  20. M. Jun, C. Foote, J. Lv et al., “Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis,” The Lancet, vol. 375, no. 9729, pp. 1875–1884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. C. Fruchart, F. Sacks, M. P. Hermans et al., “The residual risk reduction initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia,” American Journal of Cardiology, vol. 102, no. 10, supplement, pp. 1K–34K, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. B. J. Arsenault, P. Barter, D. A. DeMicco, et al., “TNT Study Investigators. Prediction of cardiovascular events in statin-treated stable coronary patients by lipid and nonlipid biomarkers,” Journal of the American College of Cardiology, vol. 57, no. 1, pp. 63–69, 2011.
  23. W. A. van der Steeg, I. Holme, S. M. Boekholdt et al., “High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies,” Journal of the American College of Cardiology, vol. 51, no. 6, pp. 634–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Barter, “Lessons Learned from the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) Trial,” American Journal of Cardiology, vol. 104, no. 10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Barter, M. Caulfield, M. Eriksson, et al., “ILLUMINATE Investigators. Effects of torcetrapib in patients at high risk for coronary events,” New England Journal of Medicine, vol. 357, no. 21, pp. 2109–2122, 2007.
  26. P. M. Ridker, J. Genest, S. M. Boekholdt et al., “HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial,” The Lancet, vol. 376, no. 9738, pp. 333–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. G. G. Schwartz, A. G. Olsson, M. Abt, et al., “dal-OUTCOMES Investigators. Effects of dalcetrapib in patients with a recent acute coronary syndrome,” New England Journal of Medicine, vol. 367, no. 22, pp. 2089–2099, 2012.
  28. HPS2-THRIVE Collaborative Group, “HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment,” European Heart Journal, vol. 34, no. 17, pp. 1279–1291, 2013.
  29. C. Cook and C. Sheets, “Clinical equipoise and personal equipoise: two necessary ingredients for reducing bias in manual therapy trials,” Journal of Manual and Manipulative Therapy, vol. 19, no. 1, pp. 55–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Frikke-Schmidt, B. G. Nordestgaard, P. Schnohr, and A. Tybjærg-Hansen, “Single nucleotide polymorphism in the low-density lipoprotein receptor is associated with a threefold risk of stroke: a case-control and prospective study,” European Heart Journal, vol. 25, no. 11, pp. 943–951, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. B. F. Voight, G.M. Peloso, M. Orho-Melander, et al., “Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study,” The Lancet, vol. 380, no. 9841, pp. 572–580, 2012.
  32. J. A. Glomset, “The plasma lecithins:cholesterol acyltransferase reaction,” Journal of Lipid Research, vol. 9, no. 2, pp. 155–167, 1968. View at Scopus
  33. T. Devries-Seimon, Y. Li, M. Y. Pin et al., “Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor,” Journal of Cell Biology, vol. 171, no. 1, pp. 61–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. V. Khera, M. Cuchel, M. De La Llera-Moya et al., “Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis,” New England Journal of Medicine, vol. 364, no. 2, pp. 127–135, 2011. View at Scopus
  35. H. H. Hassan, M. Denis, D. Y. D. Lee et al., “Identification of an ABCA1-dependent phospholipid-rich plasma membrane apolipoprotein A-I binding site for nascent HDL formation: implications for current models of HDL biogenesis,” Journal of Lipid Research, vol. 48, no. 11, pp. 2428–2442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. S. Rosenson, H. B. Brewer Jr., W. S. Davidson, et al., “Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport,” Circulation, vol. 125, no. 15, pp. 1905–1919, 2012.
  37. G. H. Rothblat and M. C. Phillips, “High-density lipoprotein heterogeneity and function in reverse cholesterol transport,” Current Opinion in Lipidology, vol. 21, no. 3, pp. 229–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. P. Adorni, F. Zimetti, J. T. Billheimer et al., “The roles of different pathways in the release of cholesterol from macrophages,” Journal of Lipid Research, vol. 48, no. 11, pp. 2453–2462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. F. Oram and A. M. Vaughan, “ABCA1-mediated transport of cellular cholesterol and phospholipids to HBL apolipoproteins,” Current Opinion in Lipidology, vol. 11, no. 3, pp. 253–260, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Nagao, M. Tomioka, and K. Ueda, “Function and regulation of ABCA1—membrane meso-domain organization and reorganization,” FEBS Journal, vol. 278, no. 18, pp. 3190–3203, 2011. View at Publisher · View at Google Scholar
  41. Y. Zhao, T. J. C. Van Berkel, and M. Van Eck, “Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions,” Current Opinion in Lipidology, vol. 21, no. 5, pp. 441–453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. G. Sorci-Thomas, J. S. Owen, B. Fulp, et al., “Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers,” Journal of Lipid Research, vol. 53, no. 9, pp. 1890–1909, 2012.
  43. M. C. Phillips, “New insights into the determination of HDL structure by apolipoproteins,” Journal of Lipid Research, 2012.
  44. K. Okuhira, M. L. Fitzgerald, N. Tamehiro et al., “Binding of PDZ-RhoGEF to ATP-binding cassette transporter A1 (ABCA1) induces cholesterol efflux through RhoA activation and prevention of transporter degradation,” Journal of Biological Chemistry, vol. 285, no. 21, pp. 16369–16377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. B. Neufeld, A. T. Remaley, S. J. Demosky et al., “Cellular localization and trafficking of the human ABCA1 transporter,” Journal of Biological Chemistry, vol. 276, no. 29, pp. 27584–27590, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Kellner-Weibel and M. de la Llera-Moya, “Update on HDL receptors and cellular cholesterol transport,” Current Atherosclerosis Reports, vol. 13, no. 3, pp. 233–241, 2011. View at Publisher · View at Google Scholar
  47. J. M. Timmins, J. Y. Lee, E. Boudyguina et al., “Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1333–1342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. L. R. Brunham, J. K. Kruit, J. Iqbal et al., “Intestinal ABCA1 directly contributes to HDL biogenesis in vivo,” Journal of Clinical Investigation, vol. 116, no. 4, pp. 1052–1062, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Zhang, F. C. McGillicuddy, C. C. Hinkle et al., “Adipocyte modulation of high-density lipoprotein cholesterol,” Circulation, vol. 121, no. 11, pp. 1347–1355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Fernández-Hernando, Y. Suárez, K. J. Rayner, and K. J. Moore, “MicroRNAs in lipid metabolism,” Current Opinion in Lipidology, vol. 22, no. 2, pp. 86–92, 2011.
  51. K. J. Rayner, F. J. Sheedy, C. C. Esau et al., “Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2921–2931, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. K. J. Rayner, C. C. Esau, F. N. Hussain, et al., “Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides,” Nature, vol. 478, no. 7369, pp. 404–407, 2011.
  53. M. H. Oosterveer, A. Grefhorst, A. K. Groen, and F. Kuipers, “The liver X receptor: control of cellular lipid homeostasis and beyond: implications for drug design,” Progress in Lipid Research, vol. 49, no. 4, pp. 343–352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. M. De La Llera-Moya, D. Drazul-Schrader, B. F. Asztalos, M. Cuchel, D. J. Rader, and G. H. Rothblat, “The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 796–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. T. E. Akiyama, S. Sakai, G. Lambert et al., “Conditional disruption of the peroxisome proliferator-activated receptor γ gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux,” Molecular and Cellular Biology, vol. 22, no. 8, pp. 2607–2619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. K. J. Rayner, Y. Suلrez, A. Dلvalos, et al., “MiR-33 contributes to the regulation of cholesterol homeostasis,” Science, vol. 328, no. 5985, pp. 1570–1573, 2010.
  57. I. C. Gelissen, S. Cartland, A. J. Brown et al., “Expression and stability of two isoforms of ABCG1 in human vascular cells,” Atherosclerosis, vol. 208, no. 1, pp. 75–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. I. D. Kerr, A. J. Haider, and I. C. Gelissen, “The ABCG family of membrane-associated transporters: you don't have to be big to be mighty,” British Journal of Pharmacology, vol. 164, no. 7, pp. 1767–1779, 2011.
  59. E. J. Tarling, D. D. Bojanic, R. K. Tangirala et al., “Impaired development of atherosclerosis in Abcg1-/- Apoe -/- mice: identification of specific oxysterols that both accumulate in Abcg1-/- Apoe-/- tissues and induce apoptosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 6, pp. 1174–1180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. Kennedy, G. C. Barrera, K. Nakamura et al., “ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation,” Cell Metabolism, vol. 1, no. 2, pp. 121–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Yvan-Charvet, N. Wang, and A. R. Tall, “Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 2, pp. 139–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Van Eck, I. S. T. Bos, R. B. Hildebrand, B. T. Van Rij, and T. J. C. Van Berkel, “Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development,” American Journal of Pathology, vol. 165, no. 3, pp. 785–794, 2004. View at Scopus
  63. E. Demetz, I. Tancevski, K. Duwensee, et al., “Inhibition of hepatic scavenger receptor-class B type I by RNA interference decreases atherosclerosis in rabbits,” Atherosclerosis, vol. 222, no. 2, pp. 360–366, 2012.
  64. M. Vergeer, S. J. A. Korporaal, R. Franssen et al., “Genetic variant of the scavenger receptor BI in humans,” New England Journal of Medicine, vol. 364, no. 2, pp. 136–145, 2011. View at Scopus
  65. A. Al-Jarallah and B. L. Trigatti, “A role for the scavenger receptor, class B type I in high density lipoprotein dependent activation of cellular signaling pathways,” Biochimica et Biophysica Acta, vol. 1801, no. 12, pp. 1239–1248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Wang, H. L. Collins, M. Ranalletta et al., “Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo,” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2216–2224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. R. B. Hildebrand, B. Lammers, I. Meurs et al., “Restoration of high-density lipoprotein levels by cholesteryl ester transfer protein expression in scavenger receptor class B Type i (SR-BI) knockout mice does not normalize pathologies associated with SR-BI deficiency,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 7, pp. 1439–1445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. M. El Bouhassani, S. Gilibert, M. Moreau et al., “Cholesteryl ester transfer protein expression partially attenuates the adverse effects of SR-BI receptor deficiency on cholesterol metabolism and atherosclerosis,” Journal of Biological Chemistry, vol. 286, no. 19, pp. 17227–17238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Masson, M. Koseki, M. Ishibashi et al., “Increased HDL cholesterol and ApoA-I in humans and mice treated with a novel SR-BI inhibitor,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 12, pp. 2054–2060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Navab, S. T. Reddy, B. J. Van Lenten, and A. M. Fogelman, “HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms,” Nature Reviews Cardiology, vol. 8, no. 4, pp. 222–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Besler, T. F. Lüscher, and U. Landmesser, “Molecular mechanisms of vascular effects of High-density lipoprotein: alterations in cardiovascular disease,” EMBO Molecular Medicine, vol. 4, no. 4, pp. 251–268, 2012.
  72. A. Kontush and M. J. Chapman, “Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities,” Current Opinion in Lipidology, vol. 21, no. 4, pp. 312–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. S. A. Sorrentino, C. Besler, L. Rohrer et al., “Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy,” Circulation, vol. 121, no. 1, pp. 110–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Navab, S. Y. Hama, G. P. Hough, G. Subbanagounder, S. T. Reddy, and A. M. Fogelman, “A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids,” Journal of Lipid Research, vol. 42, no. 8, pp. 1308–1317, 2001. View at Scopus
  75. Y. Liu and C. Tang, “Regulation of ABCA1 functions by signaling pathways,” Biochimica et Biophysica Acta, vol. 1821, no. 3, pp. 522–529, 2012.
  76. S. Patel, B. A. Di Bartolo, S. Nakhla et al., “Anti-inflammatory effects of apolipoprotein A-I in the rabbit,” Atherosclerosis, vol. 212, no. 2, pp. 392–397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Riwanto, L. Rohrer, B. Roschitzki, et al., “Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling,” Circulation, vol. 127, no. 8, pp. 891–904, 2013.
  78. K. Sato and F. Okajima, “Role of sphingosine 1-phosphate in anti-atherogenic actions of high-density lipoprotein,” World Journal of Biological Chemistry, vol. 1, no. 11, pp. 327–337, 2010.
  79. K. Alwaili, D. Bailey, Z. Awan, et al., “The HDL proteome in acute coronary syndromes shifts to an inflammatory profile,” Biochimica et Biophysica Acta, vol. 1821, no. 3, pp. 405–415, 2012.
  80. C. Mineo, I. S. Yuhanna, M. J. Quon, and P. W. Shaul, “High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9142–9149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. I. Suc, I. Escargueil-Blanc, M. Troly, R. Salvayre, and A. Negre-Salvayre, “HDL and apoA prevent cell death of endothelial cells induced by oxidized LDL,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 10, pp. 2158–2166, 1997. View at Scopus
  82. T. Langmann, J. Klucken, M. Reil et al., “Molecular cloning of the human ATP-Binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 29–33, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. J. R. Nofer, M. F. Brodde, and B. E. Kehrel, “High-density lipoproteins, platelets and the pathogenesis of atherosclerosis: frontiers in research review: physiological and pathological functions of high-density lipoprotein,” Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 7, pp. 726–735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Li, J. B. Dong, and M. P. Wu, “Human ApoA-I overexpression diminishes LPS-induced systemic inflammation and multiple organ damage in mice,” European Journal of Pharmacology, vol. 590, no. 1–3, pp. 417–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. P. M. S. Figueirêdo, C. F. Catani, and T. Yano, “Serum high-density lipoprotein (HDL) inhibits in vitro enterohemolysin (EHly) activity produced by enteropathogenic Escherichia coli,” FEMS Immunology and Medical Microbiology, vol. 38, no. 1, pp. 53–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Yin, S. L. Tang, X. H. Yu, et al., “Apolipoprotein A-I inhibits LPS-induced atherosclerosis in ApoE-/- mice possibly via activated STAT3-mediated upregulation of tristetraprolin,” Acta Pharmacologica Sinica, 2013. View at Publisher · View at Google Scholar
  87. K. M. Hager and S. L. Hajduk, “Mechanism of resistance of African trypanosomes to cytotoxic human HDL,” Nature, vol. 385, no. 6619, pp. 823–826, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Krishna, M. S. Anderson, A. J. Bergman et al., “Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies,” The Lancet, vol. 370, no. 9603, pp. 1907–1914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. M. J. Chapman, W. Le Goff, M. Guerin, and A. Kontush, “Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors,” European Heart Journal, vol. 31, no. 2, pp. 149–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. C. P. Cannon, S. Shah, H. M. Dansky, et al., “Safety of anacetrapib in patients with or at high risk for coronary heart disease,” New England Journal of Medicine, vol. 363, no. 25, pp. 2406–2415, 2010.
  91. B. Lauring, A. K. Taggart, J. R. Tata, et al., “Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression,” Science Translational Medicine, vol. 4, no. 148, p. 148ra115, 2012.
  92. Clinical trial.gov.REVEAL: Randomized Evaluation of the Effects of Anacetrapib through Lipid-modification, 2010, http://clinicaltrials.gov/ct2/show/NCT01252953.
  93. S. J. Nicholls, H. B. Brewer, J. J. Kastelein, et al., “Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial,” Journal of the American Medical Association, vol. 306, no. 19, pp. 2099–2109, 2011.
  94. http://clinicaltrials.gov/show/NCT01687998.
  95. L. A. Carlson, “Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review,” Journal of Internal Medicine, vol. 258, no. 2, pp. 94–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. A. S. Wierzbicki, “Niacin: the only vitamin that reduces cardiovascular events,” International Journal of Clinical Practice, vol. 65, no. 4, pp. 379–385, 2011.
  97. “Clofibrate and niacin in coronary heart disease,” Journal of the American Medical Association, vol. 231, no. 4, pp. 360–381, 1975.
  98. E. Bruckert, J. Labreuche, and P. Amarenco, “Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis,” Atherosclerosis, vol. 210, no. 2, pp. 353–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. C. P. Cannon, “High-density lipoprotein cholesterol as the Holy Grail,” Journal of the American Medical Association, vol. 306, no. 19, pp. 2153–2155, 2011.
  100. I. Gouni-Berthold and H. K. Berthold, “The role of Niacin in lipid-lowering treatment: are we aiming too high?” Current Pharmaceutical Design, vol. 19, no. 17, pp. 3094–3106, 2013.
  101. H. K. Parson, H. Harati, D. Cooper, and A. I. Vinik, “The role of prostaglandin D2 and the autonomic nervous system on Niacin induced flushing,” Journal of Diabetes, vol. 5, no. 1, pp. 59–67, 2013.
  102. H. E. Bays, A. Shah, Q. Dong, C. McCrary Sisk, and D. Maccubbin, “Extended-release niacin/laropiprant lipid-altering consistency across patient subgroups,” International Journal of Clinical Practice, vol. 65, no. 4, pp. 436–445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. http://www.arisaph.com/newsroom/press.php.
  104. C. R. Sirtori, L. Calabresi, G. Franceschini et al., “Cardiovascular status of carriers of the apolipoprotein A-IMilano mutant: the limone sul garda study,” Circulation, vol. 103, no. 15, pp. 1949–1954, 2001. View at Scopus
  105. S. E. Nissen, T. Tsunoda, E. M. Tuzcu et al., “Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial,” Journal of the American Medical Association, vol. 290, no. 17, pp. 2292–2300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. United States Securities and Exchange Commission filing, 2013, http://www.faqs.org/sec-filings/091224/MEDICINES-CO-DE_8-K.
  107. J. C. Tardif, “Emerging high-density lipoprotein infusion therapies: fulfilling the promise of epidemiology?” Journal of Clinical Lipidology, vol. 4, no. 5, pp. 399–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. B. Ibanez, C. Giannarelli, G. Cimmino, et al., “Recombinant HDL(Milano) exerts greater anti-inflammatory and plaque stabilizing properties than HDL(wild-type),” Atherosclerosis, vol. 220, no. 1, pp. 72–77, 2012.
  109. R. Chenevard, D. Hürlimann, L. Spieker, et al., “Reconstituted HDL in acute coronary syndromes,” Cardiovascular Therapeutics, vol. 30, no. 2, pp. e51–e57, 2012.
  110. “A single ascending dose study examining the safety and pharmacokinetic profile of reconstituted high density lipoprotein (CSL112) administered to patients. In: ClinicalTrials.gov. National Library of Medicine,” 2012, http://www.clinicaltrials.gov/ct2/show/NCT01499420.
  111. R. Waksman, R. Torguson, K. M. Kent et al., “A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome,” Journal of the American College of Cardiology, vol. 55, no. 24, pp. 2727–2735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. F. M. Sacks, L. L. Rudel, A. Conner et al., “Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo,” Journal of Lipid Research, vol. 50, no. 5, pp. 894–907, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. G. M. Anantharamaiah, J. L. Jones, and C. G. Brouillette, “Studies of synthetic peptide analogs of the amphiphatic helix. Structure of complexes with dimyristoyl phosphatidylcholine,” Journal of Biological Chemistry, vol. 260, no. 18, pp. 10248–10255, 1985. View at Scopus
  114. J. D. Smith, “Apolipoprotein A-I and its mimetics for the treatment of atherosclerosis,” Current Opinion in Investigational Drugs, vol. 11, no. 9, pp. 989–996, 2010. View at Scopus
  115. G. Datta, M. Chaddha, S. Hama et al., “Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide,” Journal of Lipid Research, vol. 42, no. 7, pp. 1096–1104, 2001. View at Scopus
  116. P. K. Shah and K. Y. Chyu, “Apolipoprotein A-I mimetic peptides: potential role in atherosclerosis management,” Trends in Cardiovascular Medicine, vol. 15, no. 8, pp. 291–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. D. Weihrauch, H. Xu, Y. Shi, et al., “Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice,” American Journal of Physiology, vol. 293, pp. H1432–H1441, 2007.
  118. L. T. Bloedon, R. Dunbar, D. Duffy et al., “Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients,” Journal of Lipid Research, vol. 49, no. 6, pp. 1344–1352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. C. B. Sherman, S. J. Peterson, and W. H. Frishman, “Apolipoprotein A-I mimetic peptides: a potential new therapy for the prevention of atherosclerosis,” Cardiology in Review, vol. 18, no. 3, pp. 141–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Navab, I. Shechter, G. M. Anantharamaiah, S. T. Reddy, B. J. Van Lenten, and A. M. Fogelman, “Structure and function of HDL mimetics,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 2, pp. 164–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. C. E. Watson, N. Weissbach, L. Kjems et al., “Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function,” Journal of Lipid Research, vol. 52, no. 2, pp. 361–373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Ou, Z. Ou, D. W. Jones et al., “L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease,” Circulation, vol. 107, no. 18, pp. 2337–2341, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. X. Chen, C. Burton, X. Song et al., “An apoa-I mimetic peptide increases LCAT activity in mice through increasing HDL concentration,” International Journal of Biological Sciences, vol. 5, no. 5, pp. 489–499, 2009. View at Scopus
  124. M. Navab, S. T. Reddy, G. M. Anantharamaiah et al., “Intestine may be a major site of action for the apoA-I mimetic peptide 4F whether administered subcutaneously or orally,” Journal of Lipid Research, vol. 52, no. 6, pp. 1200–1210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Navab, S. T. Reddy, G. M. Anantharamaiah, et al., “D-4F-mediated reduction in metabolites of arachidonic and linoleic acids in the small intestine is associated with decreased inflammation in lowdensity lipoprotein receptor-null mice,” Journal of Lipid Research, vol. 53, pp. 437–445, 2012.
  126. A. T. Remaley, F. Thomas, J. A. Stonik et al., “Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway,” Journal of Lipid Research, vol. 44, no. 4, pp. 828–836, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. G. M. Anantharamaiah, V. K. Mishra, D. W. Garber et al., “Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides,” Journal of Lipid Research, vol. 48, no. 9, pp. 1915–1923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Chattopadhyay, M. Navab, and G. Hough, “A novel approach to oral ApoA-I mimetic therapy,” Journal of Lipid Research, vol. 54, no. 4, pp. 995–1010, 2013.
  129. S. Imaizumi, M. Navab, C. Morgantini, et al., “Dysfunctional high-density lipoprotein and the potential of apolipoprotein A-1 mimetic peptides to normalize the composition and function of lipoproteins,” Circulation Journal, vol. 75, no. 7, pp. 1533–1538, 2011. View at Publisher · View at Google Scholar
  130. F. Tabet, A. T. Remaley, A. I. Segaliny et al., “The 5A apolipoprotein A-I mimetic peptide displays antiinflammatory and antioxidant properties in vivo and in vitro,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 2, pp. 246–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. E. Carballo-Jane, Z. Chen, E. O'Neill et al., “ApoA-I mimetic peptides promote pre-β HDL formation in vivo causing remodeling of HDL and triglyceride accumulation at higher dose,” Bioorganic and Medicinal Chemistry, vol. 18, no. 24, pp. 8669–8678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. Zheng, A. B. Patel, V. Narayanaswami, G. L. Hura, B. Hang, and J. K. Bielicki, “HDL mimetic peptide ATI-5261 forms an oligomeric assembly in solution that dissociates to monomers upon dilution,” Biochemistry, vol. 50, no. 19, pp. 4068–4076, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. J. K. Bielicki, H. Zhang, Y. Cortez et al., “A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice,” Journal of Lipid Research, vol. 51, no. 6, pp. 1496–1503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. http://circ.ahajournals.org/cgi/content/meeting_abstract/120/18_MeetingAbstracts/S445-a.
  135. A. C. Edmondson, R. J. Brown, S. Kathiresan, et al., “Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans,” The Journal of Clinical Investigation, vol. 119, no. 4, pp. 1042–1050, 2009. View at Publisher · View at Google Scholar
  136. K. O. Badellino, M. L. Wolfe, M. P. Reilly, and D. J. Rader, “Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis,” PLoS Medicine, vol. 3, no. 2, article e22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. N. P. Tang, L. S. Wang, L. Yang et al., “Protective effect of an endothelial lipase gene variant on coronary artery disease in a Chinese population,” Journal of Lipid Research, vol. 49, no. 2, pp. 369–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. T. Ishida, S. Choi, R. K. Kundu et al., “Endothelial lipase is a major determinant of HDL level,” Journal of Clinical Investigation, vol. 111, no. 3, pp. 347–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  139. E. M. deGoma and D. J. Rader, “Novel HDL-directed pharmacotherapeutic strategies,” Nature Reviews Cardiology, vol. 8, no. 5, pp. 266–277, 2011.
  140. R. J. Brown, W. R. Lagor, S. Sankaranaravanan et al., “Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein b-containing lipoproteins,” Circulation Research, vol. 107, no. 3, pp. 357–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. K. B. Goodman, M. J. Bury, M. Cheung, et al., “Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors,” Bioorganic & Medicinal Chemistry Letters, vol. 19, no. 1, pp. 27–30, 2009.
  142. D. P. O'Connell, D. F. LeBlanc, D. Cromley, J. Billheimer, D. J. Rader, and W. W. Bachovchin, “Design and synthesis of boronic acid inhibitors of endothelial lipase,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 3, pp. 1397–1401, 2012.
  143. T. M. Teslovich, K. Musunuru, A. V. Smith et al., “Biological, clinical and population relevance of 95 loci for blood lipids,” Nature, vol. 466, no. 7307, pp. 707–713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. http://circ.ahajournals.org/cgi/content/meeting_abstract/120/18_MeetingAbstracts/S1175-b.
  145. X. Rousset, B. Vaisman, B. Auerbach et al., “Effect of recombinant human lecithin cholesterol acyltransferase infusion on lipoprotein metabolism in mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 335, no. 1, pp. 140–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. X. Rousset, R. Shamburek, B. Vaisman, M. Amar, and A. T. Remaley, “Lecithin cholesterol acyltransferase: an anti- or pro-atherogenic factor?” Current Atherosclerosis Reports, vol. 13, no. 3, pp. 249–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Asada, M. Kuroda, Y. Aoyagi et al., “Ceiling culture-derived proliferative adipocytes retain high adipogenic potential suitable for use as a vehicle for gene transduction therapy,” American Journal of Physiology, vol. 301, no. 1, pp. C181–C185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. D. J. Rader, “Molecular regulation of HDL metabolism and function: implications for novel therapies,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3090–3100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. D. Bailey, R. Jahagirdar, A. Gordon et al., “RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo,” Journal of the American College of Cardiology, vol. 55, no. 23, pp. 2580–2589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Gordon, R. Jahagirdar, J. Johannson, et al., “RVX-208 a small molecule that induces apolipoprotein A-I production progresses to phase Ib/IIa clinical trials,” in Proceedings of the American College of Cardiology Scientific Sessions, Orlando, Fla, USA, 2009.
  151. S. J. Nicholls, A. Gordon, J. Johansson et al., “Efficacy and safety of a novel oral inducer of apolipoprotein A-I synthesis in statin-treated patients with stable coronary artery disease: a randomized controlled trial,” Journal of the American College of Cardiology, vol. 57, no. 9, pp. 1111–1119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. S. J. Nicholls, A. Gordon, J. Johannson, et al., “ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies,” Cardiovascular Drugs and Therapy, vol. 26, no. 2, pp. 181–187, 2012.
  153. P. K. Shah, “Atherosclerosis: targeting endogenous apo A-I-a new approach for raising HDL,” Nature Reviews Cardiology, vol. 8, no. 4, pp. 187–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. G. Lo Sasso, S. Murzilli, L. Salvatore, et al., “Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis,” Cell Metabolism, vol. 12, no. 2, pp. 187–193, 2010.
  155. T. Yasuda, D. Grillot, J. T. Billheimer et al., “Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 781–786, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Giannarelli, G. Cimmino, T. M. Connolly, et al., “Synergistic effect of liver X receptor activation and simvastatin on plaque regression and stabilization: an magnetic resonance imaging study in a model of advanced atherosclerosis,” European Heart Journal, vol. 33, no. 2, pp. 264–273, 2012.
  157. D. Peng, R. A. Hiipakka, J. T. Xie et al., “A novel potent synthetic steroidal liver X receptor agonist lowers plasma cholesterol and triglycerides and reduces atherosclerosis in LDLR-/- mice,” British Journal of Pharmacology, vol. 162, no. 8, pp. 1792–1804, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. E. Rigamonti, L. Helin, S. Lestavel et al., “Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages,” Circulation Research, vol. 97, no. 7, pp. 682–689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. M. N. Bradley, C. Hong, M. Chen, et al., “Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE,” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2337–2346, 2007.
  160. E. M. Quinet, M. D. Basso, A. R. Halpern et al., “LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse,” Journal of Lipid Research, vol. 50, no. 12, pp. 2358–2370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. A. Katz, C. Udata, E. Ott et al., “Safety, pharmacokinetics, and pharmacodynamics of single doses of lxr-623, a novel liver X-receptor agonist, in healthy participants,” Journal of Clinical Pharmacology, vol. 49, no. 6, pp. 643–649, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. K. Griffett, L. A. Solt, B. E. El-Gendy, T. M. Kamenecka, and T. P. Burris, “A liver-selective LXR inverse agonist that suppresses hepatic steatosis,” ACS Chemical Biology, vol. 8, no. 3, pp. 559–567, 2012.
  163. A. Mencarelli and S. Fiorucci, “FXR an emerging therapeutic target for the treatment of atherosclerosis,” Journal of Cellular and Molecular Medicine, vol. 14, no. 1-2, pp. 79–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. E. Hambruch, S. Miyazaki-Anzai, U. Hahn, et al., “Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 343, no. 3, pp. 556–567, 2012.
  165. S. Fiorucci, S. Cipriani, F. Baldelli, and A. Mencarelli, “Bile acid-activated receptors in the treatment of dyslipidemia and related disorders,” Progress in Lipid Research, vol. 49, no. 2, pp. 171–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. F. A. Al-Allaf, C. Coutelle, S. N. Waddington, A. L. David, R. Harbottle, and M. Themis, “LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives,” International Archives of Medicine, vol. 3, no. 1, article 36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. M. Grossman, D. J. Rader, D. W. M. Muller et al., “A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia,” Nature Medicine, vol. 1, no. 11, pp. 1148–1154, 1995. View at Scopus
  168. A. S. Plump, C. J. Scott, and J. L. Breslow, “Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 20, pp. 9607–9611, 1994. View at Scopus
  169. N. Maeda, H. Li, D. Lee, P. Oliver, S. H. Quarfordt, and J. Osada, “Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia,” Journal of Biological Chemistry, vol. 269, no. 38, pp. 23610–23616, 1994. View at Scopus
  170. D. Gaudet, J. de Wal, K. Tremblay et al., “Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency,” Atherosclerosis Supplements, vol. 11, no. 1, pp. 55–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. D. Gaudet, J. Méthot, S. Déry, et al., “Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL(S447X)) gene therapy for lipoprotein lipase deficiency: an open-label trial,” Gene Therapy, vol. 20, no. 4, pp. 361–369, 2013.
  172. T. J. Marquart, R. M. Allen, D. S. Ory, and A. Baldán, “miR-33 links SREBP-2 induction to repression of sterol transporters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 12228–12232, 2010.
  173. T. Horie, K. Ono, M. Horiguchi et al., “MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 40, pp. 17321–17326, 2010. View at Publisher · View at Google Scholar · View at Scopus