About this Journal Submit a Manuscript Table of Contents
Cholesterol
Volume 2014 (2014), Article ID 843468, 11 pages
http://dx.doi.org/10.1155/2014/843468
Research Article

The Influence of an Obesogenic Diet on Oxysterol Metabolism in C57BL/6J Mice

1Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
2Department of Kinesiology and Health Education, Southern Illinois University Edwardsville, Campus Box 1126, Edwardsville, IL 62026-1126, USA

Received 26 October 2013; Revised 18 December 2013; Accepted 21 December 2013; Published 5 February 2014

Academic Editor: Francisco Blanco-Vaca

Copyright © 2014 Joshua S. Wooten et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Cusi, “The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes,” Current Diabetes Reports, vol. 10, no. 4, pp. 306–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. A. Neuschwander-Tetri, “Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites,” Hepatology, vol. 52, no. 2, pp. 774–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Goldstein and M. S. Brown, “Regulation of the mevalonate pathway,” Nature, vol. 343, no. 6257, pp. 425–430, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. A. J. Brown and W. Jessup, “Oxysterols and atherosclerosis,” Atherosclerosis, vol. 142, no. 1, pp. 1–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Poli, B. Sottero, S. Gargiulo, and G. Leonarduzzi, “Cholesterol oxidation products in the vascular remodeling due to atherosclerosis,” Molecular Aspects of Medicine, vol. 30, no. 3, pp. 180–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Matsui, K. Okumura, H. Mukawa, M. Hibino, Y. Toki, and T. Ito, “Increased oxysterol contents in diabetic rat hearts: their involvement in diabetic cardiomyopathy,” Canadian Journal of Cardiology, vol. 13, no. 4, pp. 373–379, 1997. View at Scopus
  7. N. Yoshioka, J. Adachi, Y. Ueno, and K.-I. Yoshida, “Oxysterols increase in diabetic rats,” Free Radical Research, vol. 39, no. 3, pp. 299–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Whaley-Connell, P. A. McCullough, and J. R. Sowers, “The role of oxidative stress in the metabolic syndrome,” Reviews in Cardiovascular Medicine, vol. 12, no. 1, pp. 21–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. V. N. Schumaker and D. L. Puppione, “Sequential flotation ultracentrifugation,” Methods in Enzymology, vol. 128, pp. 155–170, 1986. View at Scopus
  10. V. Rodríguez-Sureda and J. Peinado-Onsurbe, “A procedure for measuring triacylglyceride and cholesterol content using a small amount of tissue,” Analytical Biochemistry, vol. 343, no. 2, pp. 277–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. S. Brown, Y. K. Ho, and J. L. Goldstein, “The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters,” The Journal of Biological Chemistry, vol. 255, no. 19, pp. 9344–9352, 1980. View at Scopus
  12. S. Dzeletovic, O. Breuer, E. Lund, and U. Diczfalusy, “Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry,” Analytical Biochemistry, vol. 225, no. 1, pp. 73–80, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. J. FOLCH, M. LEES, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Scopus
  14. H. Wu, S. Ghosh, X. D. Perrard et al., “T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity,” Circulation, vol. 115, no. 8, pp. 1029–1038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. M. Nishina, S. Lowe, J. Wang, and B. Paigen, “Characterization of plasma lipids in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow,” Metabolism, vol. 43, no. 5, pp. 549–553, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. D. L. Silver, N. Wang, and A. R. Tall, “Defective HDL particle uptake in ob/ob hepatocytes causes decreased recycling, degradation, and selective lipid uptake,” Journal of Clinical Investigation, vol. 105, no. 2, pp. 151–159, 2000. View at Scopus
  17. P. M. Nishina, J. K. Naggert, J. Verstuyft, and B. Paigen, “Atherosclerosis in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow,” Metabolism, vol. 43, no. 5, pp. 554–558, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Silver, X.-C. Jiang, and A. R. Tall, “Increased high density lipoprotein (HDL), defective hepatic catabolism of apoA-I and apoA-II, and decreased apoA-I mRNA in ob/ob mice: possible role of leptin in stimulation of HDL turnover,” The Journal of Biological Chemistry, vol. 274, no. 7, pp. 4140–4146, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. M. L. Gruen, M. R. Plummer, W. Zhang et al., “Persistence of high density lipoprotein particles in obese mice lacking apolipoprotein A-I,” Journal of Lipid Research, vol. 46, no. 9, pp. 2007–2014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Rigotti, B. L. Trigatti, M. Penman, H. Rayburn, J. Herz, and M. Krieger, “A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12610–12615, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. Plummer and A. H. Hasty, “Atherosclerotic lesion formation and triglyceride storage in obese apolipoprotein AI-deficient mice,” Journal of Nutritional Biochemistry, vol. 19, no. 10, pp. 664–673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. C. LeBoeuf, W. W. Tsao, E. Kirk, and M. T. Childs, “Cholesterol feeding induces cholesterol-rich VLDL in atherosclerosis- susceptible mice regardless of dietary fat content,” Nutrition Research, vol. 13, no. 5, pp. 549–561, 1993. View at Scopus
  23. E. R. Christ, P. V. Carroll, E. Albany et al., “Normal VLDL metabolism despite altered lipoprotein composition in type 1 diabetes mellitus,” Clinical Endocrinology, vol. 55, no. 6, pp. 777–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Fazio and M. F. Linton, “Mouse models of hyperlipidemia and atherosclerosis,” Front Biosci, vol. 6, pp. D515–525, 2001. View at Scopus
  25. R. C. LeBoeuf, D. L. Puppione, V. N. Schumaker, and A. J. Lusis, “Genetic control of lipid transport in mice. I. Structural properties and polymorphisms of plasma lipoproteins,” The Journal of Biological Chemistry, vol. 258, no. 8, pp. 5063–5070, 1983. View at Scopus
  26. A. J. Kennedy, K. L. J. Ellacott, V. L. King, and A. H. Hasty, “Mouse models of the metabolic syndrome,” Disease Models and Mechanisms, vol. 3, no. 3-4, pp. 156–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Breuer, “Identification and quantitation of cholest-5-ene-3β,4β-diol in rat liver and human plasma,” Journal of Lipid Research, vol. 36, no. 11, pp. 2275–2281, 1995. View at Scopus
  28. K. Bodin, L. Bretillon, Y. Aden et al., “Antiepileptic drugs increase plasma levels of 4β-hydroxycholesterol in humans. Evidence for involvement of cytochrome P450 3A4,” The Journal of Biological Chemistry, vol. 276, no. 42, pp. 38685–38689, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Goodwin, K. C. Gauthier, M. Umetani et al., “Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 223–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Staudinger, B. Goodwin, S. A. Jones et al., “The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3369–3374, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Gnerre, G. U. Schuster, A. Roth et al., “LXR deficiency and cholesterol feeding affect the expression and phenobarbital-mediated induction of cytochromes P450 in mouse liver,” Journal of Lipid Research, vol. 46, no. 8, pp. 1633–1642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Björkhem, D. Lütjohann, U. Diczfalusy, L. Ståhle, G. Ahlborg, and J. Wahren, “Cholesterol homeostasis in human brain: turnover of 24S- hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation,” Journal of Lipid Research, vol. 39, no. 8, pp. 1594–1600, 1998. View at Scopus
  33. S. Meaney, M. Hassan, A. Sakinis et al., “Evidence that the major oxysterols in human circulation originate from distinct pools of cholesterol: a stable isotope study,” Journal of Lipid Research, vol. 42, no. 1, pp. 70–78, 2001. View at Scopus
  34. K. Bodin, U. Andersson, E. Rystedt et al., “Metabolism of 4β-hydroxycholesterol in humans,” The Journal of Biological Chemistry, vol. 277, no. 35, pp. 31534–31540, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Mito, T. Hosoda, C. Kato, and K. Sato, “Change of cytokine balance in diet-induced obese mice,” Metabolism, vol. 49, no. 10, pp. 1295–1300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Pacifico, L. Di Renzo, C. Anania et al., “Increased T-helper interferon-γ-secreting cells in obese children,” European Journal of Endocrinology, vol. 154, no. 5, pp. 691–697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Z. Rocha, E. J. Folco, G. Sukhova et al., “Interferon-γ, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity,” Circulation Research, vol. 103, no. 5, pp. 467–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Park and A. L. Scott, “Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1081–1087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Wu, X. D. Perrard, Q. Wang et al., “CD11c expression in adipose tissue and blood and its role in diet-induced obesity,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 2, pp. 186–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Westman, B. Kallin, I. Björkhem, J. Nilsson, and U. Diczfalusy, “Sterol 27-hydroxylase- and apoAI/phospholipid-mediated efflux of cholesterol from cholesterol-laden macrophages: evidence for an inverse relation between the two mechanisms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 18, no. 4, pp. 554–561, 1998. View at Scopus
  41. T. Hirayama, Y. Mizokami, A. Honda et al., “Serum concentration of 27-hydroxycholesterol predicts the effects of high-cholesterol diet on plasma LDL cholesterol level,” Hepatology Research, vol. 39, no. 2, pp. 149–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Lyons, S. Samman, L. Gatto, and A. J. Brown, “Rapid hepatic metabolism of 7-ketocholesterol in vivo: implications for dietary oxysterols,” Journal of Lipid Research, vol. 40, no. 10, pp. 1846–1857, 1999. View at Scopus
  43. R. A. S. Schweizer, M. Zürcher, Z. Balazs, B. Dick, and A. Odermatt, “Rapid hepatic metabolism of 7-ketocholesterol by 11β-hydroxysteroid dehydrogenase type 1: species-specific differences between the rat, human, and hamster enzyme,” The Journal of Biological Chemistry, vol. 279, no. 18, pp. 18415–18424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. J. Brown, G. F. Watts, J. R. Burnett, R. T. Dean, and W. Jessup, “Sterol 27-hydroxylase acts on 7-ketocholesterol in human atherosclerotic lesions and macrophages in culture,” The Journal of Biological Chemistry, vol. 275, no. 36, pp. 27627–27633, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Li, M. Matozel, S. Boehme et al., “Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis,” Hepatology, vol. 53, no. 3, pp. 996–1006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Li, E. Owsley, M. Matozel, P. Hsu, C. M. Novak, and J. Y. L. Chiang, “Transgenic expression of cholesterol 7α-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice,” Hepatology, vol. 52, no. 2, pp. 678–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. C. K. Roberts, K. Liang, R. J. Barnard, C. H. Kim, and N. D. Vaziri, “HMG-CoA reductase, cholesterol 7α-hydroxylase, LDL receptor, SR-B1, and ACAT in diet-induced syndrome X,” Kidney International, vol. 66, no. 4, pp. 1503–1511, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Bjorkhem, O. Breuer, B. Angelin, and S.-A. Wikstrom, “Assay of unesterified cholesterol-5,6-epoxide in human serum by isotope dilution mass spectrometry. Levels in the healthy state and in hyperlipoproteinemia,” Journal of Lipid Research, vol. 29, no. 8, pp. 1031–1038, 1988. View at Scopus
  49. L. L. Smith and B. H. Johnson, “Biological activities of oxysterols,” Free Radical Biology and Medicine, vol. 7, no. 3, pp. 285–332, 1989. View at Scopus
  50. T. J. Berrodin, Q. Shen, E. M. Quinet, M. R. Yudt, L. P. Freedman, and S. Nagpal, “Identification of 5α,6α-epoxycholesterol as a novel modulator of liver X receptor activity,” Molecular Pharmacology, vol. 78, no. 6, pp. 1046–1058, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. S. B. Joseph, A. Castrillo, B. A. Laffitte, D. J. Mangelsdorf, and P. Tontonoz, “Reciprocal regulation of inflammation and lipid metabolism by liver X receptors,” Nature Medicine, vol. 9, no. 2, pp. 213–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Zelcer and P. Tontonoz, “Liver X receptors as integrators of metabolic and inflammatory signaling,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 607–614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Fuda, N. B. Javitt, K. Mitamura, S. Ikegawa, and C. A. Strott, “Oxysterols are substrates for cholesterol sulfotransferase,” Journal of Lipid Research, vol. 48, no. 6, pp. 1343–1352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. N. B. Javitt, Y. C. Lee, C. Shimizu, H. Fuda, and C. A. Strott, “Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression,” Endocrinology, vol. 142, no. 7, pp. 2978–2984, 2001. View at Publisher · View at Google Scholar · View at Scopus