About this Journal Submit a Manuscript Table of Contents
Computational Intelligence and Neuroscience
Volume 2010 (2010), Article ID 393019, 12 pages
http://dx.doi.org/10.1155/2010/393019
Research Article

Decoupling Action Potential Bias from Cortical Local Field Potentials

1Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
2National Institute for Applied Sciences, 69100 Villeurbanne, France

Received 17 April 2009; Revised 10 September 2009; Accepted 4 November 2009

Academic Editor: Zhe (Sage) Chen

Copyright © 2010 Stephen V. David et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Mitzdorf, “Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex,” International Journal of Neuroscience, vol. 33, no. 1-2, pp. 33–59, 1987. View at Scopus
  2. N. K. Logothetis, “The underpinnings of the BOLD functional magnetic resonance imaging signal,” The Journal of Neuroscience, vol. 23, no. 10, pp. 3963–3971, 2003. View at Scopus
  3. F. Lopes da Silva, “Functional localization of brain sources using EEG and/or MEG data: volume conductor and source models,” Magnetic Resonance Imaging, vol. 22, no. 10, pp. 1533–1538, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. R. T. Canolty, E. Edwards, S. S. Dalal, et al., “High gamma power is phase-locked to theta oscillations in human neocortex,” Science, vol. 313, no. 5793, pp. 1626–1628, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. M. Gray, P. Konig, A. K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties,” Nature, vol. 338, no. 6213, pp. 334–337, 1989. View at Scopus
  6. C. Kayser, C. I. Petkov, and N. K. Logothetis, “Tuning to sound frequency in auditory field potentials,” Journal of Neurophysiology, vol. 98, no. 3, pp. 1806–1809, 2007. View at Publisher · View at Google Scholar · View at PubMed
  7. M. Siegel, T. H. Donner, R. Oostenveld, P. Fries, and A. K. Engel, “Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention,” Neuron, vol. 60, no. 4, pp. 709–719, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. B. Pesaran, M. J. Nelson, and R. A. Andersen, “Free choice activates a decision circuit between frontal and parietal cortex,” Nature, vol. 453, no. 7193, pp. 406–409, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. E. Stark, A. Globerson, I. Asher, and M. Abeles, “Correlations between groups of premotor neurons carry information about prehension,” The Journal of Neuroscience, vol. 28, no. 42, pp. 10618–10630, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. A. Gieselmann and A. Thiele, “Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1,” European Journal of Neuroscience, vol. 28, no. 3, pp. 447–459, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. J. Noreña, B. Gourévitch, M. Pienkowski, G. Shaw, and J. J. Eggermont, “Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex,” The Journal of Neuroscience, vol. 28, no. 36, pp. 8885–8896, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. W. S. Levine, Ed., The Control Handbook, CRC Press, Boca Raton, Fla, USA, 1996.
  13. S. V. David, N. Mesgarani, J. B. Fritz, and S. A. Shamma, “Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli,” The Journal of Neuroscience, vol. 29, no. 11, pp. 3374–3386, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. K. Bizley, F. R. Nodal, I. Nelken, and A. J. King, “Functional organization of ferret auditory cortex,” Cerebral Cortex, vol. 15, no. 10, pp. 1637–1653, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. B. Fritz, S. Shamma, M. Elhilali, and D. Klein, “Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex,” Nature Neuroscience, vol. 6, no. 11, pp. 1216–1223, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. B. Pesaran, J. S. Pezaris, M. Sahani, P. P. Mitra, and R. A. Andersen, “Temporal structure in neuronal activity during working memory in macaque parietal cortex,” Nature Neuroscience, vol. 5, no. 8, pp. 805–811, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy,” Statistical Science, vol. 1, no. 1, pp. 54–77, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. C. E. Schreiner, “Order and disorder in auditory cortical maps,” Current Opinion in Neurobiology, vol. 5, no. 4, pp. 489–496, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Rasch, A. Gretton, Y. Murayama, W. Maass, and N. K. Logothetis, “Inferring spike trains from local field potentials,” Journal of Neurophysiology, vol. 99, no. 3, pp. 1461–1476, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. N. A. Lesica, A. S. Boloori, and G. B. Stanley, “Adaptive encoding in the visual pathway,” Network: Computation in Neural Systems, vol. 14, no. 1, pp. 119–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Berens, G. A. Keliris, A. S. Ecker, N. K. Logothetis, and A. S. Tolias, “Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex,” Frontiers in Neuroscience, vol. 2, no. 2, pp. 199–207, 2008.
  22. T.-P. Jung, S. Makeig, C. Humphries, et al., “Removing electroencephalographic artifacts by blind source separation,” Psychophysiology, vol. 37, no. 2, pp. 163–178, 2000. View at Publisher · View at Google Scholar · View at Scopus