About this Journal Submit a Manuscript Table of Contents
Computational Intelligence and Neuroscience
Volume 2010 (2010), Article ID 520781, 12 pages
http://dx.doi.org/10.1155/2010/520781
Research Article

Learning Arm/Hand Coordination with an Altered Visual Input

1Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology (HST), Aalborg University (AAU), DK-9220 Aalborg, Denmark
2Faculty of Electrical Engineering, University of Belgrade, Belgrade 11120, Serbia
3Institute for Multidisciplinary Research, Belgrade 11030, Serbia

Received 1 February 2010; Revised 10 May 2010; Accepted 14 June 2010

Academic Editor: Fabio Babiloni

Copyright © 2010 Simona Denisia Iftime Nielsen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The focus of this study was to test a novel tool for the analysis of motor coordination with an altered visual input. The altered visual input was created using special glasses that presented the view as recorded by a video camera placed at various positions around the subject. The camera was positioned at a frontal (F), lateral (L), or top (T) position with respect to the subject. We studied the differences between the arm-end (wrist) trajectories while grasping an object between altered vision (F, L, and T conditions) and normal vision (N) in ten subjects. The outcome measures from the analysis were the trajectory errors, the movement parameters, and the time of execution. We found substantial trajectory errors and an increased execution time at the baseline of the study. We also found that trajectory errors decreased in all conditions after three days of practice with the altered vision in the F condition only for 20 minutes per day, suggesting that recalibration of the visual systems occurred relatively quickly. These results indicate that this recalibration occurs via movement training in an altered condition. The results also suggest that recalibration is more difficult to achieve for altered vision in the F and L conditions compared to the T condition. This study has direct implications on the design of new rehabilitation systems.